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• Modelling lethal toxicity across species re-
quires species and compound specific
data.

• Relations among toxicodynamic model
parameters are shared across species.

• By incorporating these relations themulti-
species model joint GUTS-RED was devel-
oped.

• The model predicts species sensitivity at
higher precision than the standard ap-
proach.

• Cross-species shared information provides
potential to reduce animal testing.
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In environmental risk assessment (ERA), themultitude of compounds and taxa demands cross-species extrapolation to
cover the variability in sensitivity to toxicants. However, only the impact of a single compound to a single species is
addressed by the general unified threshold model of survival (GUTS). The reduced GUTS is the recommended
model to analyse lethal toxic effects in regulatory aquatic ERA. GUTS considers toxicokinetics and toxicodynamics.
Two toxicodynamic approaches are considered: Stochastic death (SD) assumes that survival decreases with an increas-
ing internalized amount of the toxicant. Individual tolerance (IT) assumes that individuals vary in their tolerance to
toxic exposure. Existing theory suggests that the product of the threshold zw and killing rate bw (both SD toxicodynamic
parameters) are constant across species or compounds if receptors and target sites are shared. We extend that theory
and show that the shape parameter β of the loglogistic threshold distribution in IT is also constant. To verify the pre-
dicted relationships, we conducted three tests using toxicity studies for eight arthropods exposed to the insecticide
flupyradifurone. We confirmed previous verifications of the relation- between SD parameters, and the newly estab-
lished relation for the IT parameter β. We enhanced GUTS to jointly model survival for multiple species with shared
receptors and pathways by incorporating the relations among toxicodynamic parameters described above. The joint
GUTS exploits the shared parameter relations and therefore constrains parameter uncertainty for each of the separate
species. Particularly for IT, the joint GUTSmore precisely predicted risk to the separate species than the standard single
species GUTS under environmentally realistic exposure. We suggest that joint GUTS modelling can improve cross-
species extrapolation in regulatory ERA by increasing the reliability of risk estimates and reducing animal testing. Fur-
thermore, the shared toxicodynamic response provides potential to reduce complexity of ecosystem models.
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1. Introduction

Onemajor challenge in ecology is to predict responses to anthropogenic
stressors across a large diversity of organisms. Synthetic chemicals have
been identified as globally important polluters of ecosystems (Stehle and
Schulz, 2015; Vörösmarty et al., 2010), with their production and diversifi-
cation outpacing many other global stressors (Bernhardt et al., 2017).

Species' responses to specific chemicals differ among taxa. For example,
sensitivity to the fungicide benzovindiflupyr strongly differed among five
fish species (Nickisch born Gericke et al., 2022). Also, arthropod sensitivity
to insecticides differs (Brock et al., 2021; Gergs et al., 2015), allowing pest-
specific plant protection products (PPPs). However, similarity of toxicolog-
ical mechanisms could be expected across species, if they are exposed to
chemicals that are designed to interfere with fundamental physiological
processes contributing to the performance and survival of organisms.
Such fundamental physiological processes (e.g. involved in respiration or
digestion) have likely been conserved and therefore are shared across re-
lated taxa (Verbruggen et al., 2018).

Different processes influence species sensitivity to a toxic compound,
which were categorized by van den Berg et al. (2021) as affecting
toxicokinetics (TK) or toxicodynamics (TD). Toxicokinetic processes com-
prise adsorption, distribution, biotransformation (metabolisation) and
elimination (Nyman et al., 2014), which govern the fate of the compound
in an organism during its transport to a target site. At the target site,
toxicodynamics describes how the compound affects the organism.
Toxicodynamics is governed by a sequence of toxicological processes that
are summarized in an adverse outcome pathway (AOP; Ankley et al.,
2010). The AOP starts with a molecular initiating event when a compound
molecule binds to a receptor. The binding event initiates a cascade of inter-
mediate events (including feedback loops or compensatory mechanisms)
that finally lead to the adverse effect (Spurgeon et al., 2020).

Complexity of TK-TD processes suggests diversity in species sensitivity
to a compound. However, orthologs in the processes might conserve toxic-
ity responses across related species (Spurgeon et al., 2020), such that TD
might be similar if species share receptors and pathways (Ashauer et al.,
2015; Gergs et al., 2019; van denBerg et al., 2021). Exploiting the similarity
of mechanisms in toxic responses could play a crucial role to improve envi-
ronmental risk assessment (ERA) given the number of chemical compounds
to which biodiversity is exposed (Ashauer and Jager, 2018; Hendriks,
2013).

The European regulatory environmental risk assessment of plant protec-
tion products extrapolates the risk to groups of non-target species from a
few species (van den Berg et al., 2021), for which the sensitivity to a com-
pound was assessed in standard laboratory experiments (e.g. OECD, 2011;
and see Schuijt et al., 2021). Expected uncertainty (e.g. differing sensitivi-
ties of untested species) is covered by safety margins. In simple terms, the
critical concentration that was measured for the tested species in the toxic-
ity testmust be divided by an assessment factor reflecting the safetymargin.
At this reduced concentration the compound is assumed to not critically
harm untested species or other environmental aspects. To reduce uncer-
tainty of the risk assessment and therefore safety margins, the risk to addi-
tional species is tested. Extrapolations to the species group level can be
based on an observed distribution of species-specific risks (species sensitiv-
ity distribution - SSD, see Aldenberg et al., 2002), which is a standard pro-
cedure in the European regulatory ERA for aquatic species (EFSA PPR
Panel, 2013).

Basing ERA on tests for a multitude of species is undesirable for eco-
nomic and ethical reasons. To reduce the amount of animal testing, models
can be applied (Jang et al., 2014) that extrapolate the impact of PPPs across
compounds and species (van den Berg et al., 2021). Computational ap-
proaches address sensitivity at different levels of organismic organization
and range from correlative models (e.g. quantitative structure-activity rela-
tionship –QSAR) via simplemechanistic approaches based on generic prin-
ciples (e.g. octanol−water partition ratio KOW) or physiological
understanding (e.g. TK-TD) to complex case-specific models such as quanti-
tative AOPs (Hendriks, 2013; Spinu et al., 2020).
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Key to successful extrapolation is reliably linkingmicroscopicmolecular
pathways to changes in life history traits and, thus, macroscopic vital rates
(Ashauer and Jager, 2018). Similar molecular toxicological processes
should be reflected in shared relations among TK-TD parameters.

Such relations have been theoretically derived and tested on basis of the
General Unified Threshold model of Survival (GUTS). GUTS is a TK-TD
model designed to analyse lethal toxic effects under time variable exposure
(Jager et al., 2011; Jager and Ashauer, 2018). Initially, the TK part of the
model calculates from a time-variable external exposure the concentration
of the compound within the exposed organism. Then the TD part calculates
the lethal impact of the internalized compound. Usually, two TD ap-
proaches are considered that reflect extreme assumptions: Stochastic
death (SD) assumes that above a least contamination (threshold zw), the
hazard of an organism to die increases linearly with the internalized
amount of the toxicant at the rate bw (for details see Supporting Material
S1 and Jager and Ashauer, 2018). Individual tolerance (IT) assumes that in-
dividuals vary in their tolerance to toxic exposure (for details see
Section 2.1.1 and Jager and Ashauer, 2018).

Concerning TK-TD parameter relations across species, Baas and
Kooijman (2015) found that species sensitivity to a compound (in terms
of the no effect concentration - see Jager and Kooijman, 2009) increased
with the species-specific somatic maintenance, which indicates that mass
turnover likely increases interference of the toxicant with the organism.
Further, Jager and Kooijman (2009) considered compounds with similar
mechanisms of toxicity. Because the mechanism is similar among these
compounds, they assumed that the toxic effect of a compound molecule
at a target site is similar, independent of the actual substance. In other
words, as long as compounds share the mode of action, each of their mole-
cules triggers the same toxic effect. Based on this assumption, they theoret-
ically derived for the SD variant of GUTS that if calculating for different
compounds the threshold zw and hazard rate bw, these TD-parameters are
linearly related on a log-scale, where the slope of the line is −1. This
means that the product zw × bw is the same for all the compounds (see
also Supporting Material S1). The relation has been empirically shown
(Ashauer et al., 2015). Further, Gergs et al. (2019) argued that the relation
also holds across species that are exposed to a single compound if they share
receptors and pathways. They found the slope of −1 for invertebrates ex-
posed to the organophosphate chlorpyrifos.

Here we systematically expanded the theory outlined for SD (Jager and
Kooijman, 2009) to the individual tolerance (IT) variant (Jager et al.,
2011). We applied the theory to develop joint GUTS modelling of related
species. The joint model is based on the principle that multiple related spe-
cies with shared receptors and pathways (e.g. involving conserved AOP)
potentially share the toxic response to a compound. This group-level infor-
mation constrains variability of toxic responses across species. We tested
the theory and the joint species model along the survival response of
eight arthropod species exposed to flupyradifurone (a butenolide insecti-
cide acting as agonist on insect nicotinic acetylcholine receptors). The
novel substance is regularly applied in agriculture and has entered the envi-
ronment (Bishop et al., 2020; Metcalfe et al., 2019). For details on the
chemical see e.g. Nauen et al. (2015).

For clarity, we present here our analysis for the individual tolerance var-
iant GUTS-RED-IT. Yet, we developed amethod to jointly model species for
the stochastic death variant GUTS-RED-SD, too. The parallel analysis is pro-
vided in Supporting Material S1.
2. Materials and methods

2.1. Theory

Lethal toxic impacts are analysed in the TK-TD frameworkwith the Gen-
eral Unified Thresholdmodel of Survival (GUTS). GUTS (Jager et al., 2011)
is a mechanistic modelling approach to project individual survival under
temporally varying exposure profiles (Jager and Ashauer, 2018). The use
of the reduced variant of the GUTS framework (GUTS-RED as outlined
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below) is recommended when working with survival data only, i.e. in the
absence of body residue data (Jager et al., 2011).

2.1.1. Standard single species GUTS-RED
GUTS-RED links a time variable external compound concentration C(t)

to the internal scaled damage Dw(t) in a one compartmental first order
process

dDw tð Þ
dt

¼ kD ∙ C tð Þ � Dw tð Þð Þ (1)

where kD is the dominant rate constant and t is time. GUTS-RED reduces
toxicokinetics and damage dynamics into Eq. (1), assuming that the faster
processes dominate the accrual of damage. This simplifying assumption
pragmatically abstracts from modelling the body residue Ci(t) of the com-
pound, as it usually is not measured in toxicity tests.

Damage Dw(t) scales to the body residue Ci(t) by the reciprocal of the
bioconcentration factor BCF, which, similarly to the body residue, is usually
unknown (Jager and Kooijman, 2009). Furthermore, assuming that only an
unknown proportion α of the body residue Ci(t) reaches the target site to
exert a toxic effect, the damage scales as

Dw tð Þ ¼ Ci tð Þ
BCF

¼ αCT tð Þ
BCF

(2)

where CT(t) is the target occupation (i.e. the internal concentration of the
compound at the target site).

The GUTS-framework is designed to model survival. The lethal
toxicodynamics are usually modelled using one of two approaches, stochas-
tic death (SD) or individual tolerance (IT). The two approaches are extreme
cases within the GUTS framework and describe fundamentally different
mortality processes and therefore consider different aspects of empirical
survival data (Ashauer et al., 2015). The analysis for SD is provided in
Supporting Material S1.

The IT variant assumes that each organism can tolerate damage up to an
individual-specific threshold. If the scaled damage Dw(t) exceeds its thresh-
old, the individual dies. The individual variability of tolerance thresholds is
modelled as a log-logistic probability distribution. Therefore, the survival
probability is

SIT tð Þ ¼ 1 � 1

1þ 1
mw

∙ max
0 ≤ τ ≤ t

Dw τð Þð Þ
� � � β

0
BBB@

1
CCCA∙e � hbt (3)

wheremw and β are the median and shape parameters of the threshold dis-
tribution. The survival probability SIT(t) additionally depends on a constant
background mortality hb which is independent of the actual compound.

Note that while IT considers individual tolerance levels of each organ-
ism in the population, these are described by the population-wide distribu-
tion of tolerance thresholds in Eq. (3). Therefore, parameters mw and β are
species-specific population parameters.

2.1.2. Theory on the toxicodynamics for multiple related species
GUTS-RED is considered a compound- and species-specific approach,

meaning that any species responds differently to a specific compound.
However, Jager and Kooijman (2009) argued that compounds with similar
mechanisms of toxicity cause a similar magnitude of effect per molecule at
the target site, independent of the compound. Similarly, if a compound af-
fects different species with the same mechanism of toxicity (i.e. if receptors
and pathways are conserved across taxa), the magnitude of species re-
sponses should be comparable once the compound reached the target site
(Gergs et al., 2019). Specifically, it can be assumed that each single mole-
cule binding to a receptor exerts a similar cascade of physiological pro-
cesses and therefore the same effect, again following the argument of
Jager and Kooijman, (2009). As such, the relationship between the target
3

occupation CT(t) and a toxic effect should be compound- and species-
independent.

Therefore, in the case of GUTS-RED-IT, substituting the scaled damage
Dw(t) in Eq. (3) according to Eq. (2) results in

SIT tð Þ ¼ 1 � 1

1þ 1
mw

∙ max
0 ≤ τ ≤ t

α CT tð Þ
BCF

� �� � � β

0
BBB@

1
CCCA∙e � hbt

¼ 1 � 1

1þ α
mw ∙BCF ∙ max

0 ≤ τ ≤ t
CT tð Þð Þ

� � � β

0
BBB@

1
CCCA∙e � hbt (4)

where we applied that factors α and BCF are constant and therefore can be
moved in front of the maximum function (if c is constant, max(cx) = cmax
(x)).

Because we suppose that the relation of target occupancy CT(t) and ef-
fect (i.e. survival SIT(t)) is independent among compounds or species, the
rescaled parameters at target site

mwT ¼ BCF
α mw and βT ¼ β (5)

are also compound or species independent, despite their species- or
compound-specific components BCF, α, mw and β. Considering two differ-
ent species or compounds (A and B), we find

mwT ¼ BCFA

αA
mwA ¼ BCFB

αB
mwB and βT ¼ βA ¼ βB (6)

Thus, the shape parameter of the loglogistic threshold distribution β is
equal for all species and compounds. Importantly, the relation for the
shape-parameter β is independent of BCF and α, such that these species
and compound-specific values do not need to bemeasured in order to deter-
mine the shape-parameter β.

The equality of β across species can be justified on biological reasons,
too. The shape parameter β is a measure for the spread of the tolerance
threshold distribution in a population of test organisms (Jager and
Ashauer, 2018). If β is low, test organisms can have different thresholds
and therefore vary in their sensitivity to a compound. Ifβ is high, test organ-
isms have rather similar tolerance thresholds. The tolerance threshold to a
toxic compound depends on the receptor towhich the compound binds and
on the subsequently triggered pathway. There is individual variability in
the receptor and pathway, which defines the population's spread of toler-
ance thresholds. However, the individual variability of microbiological pro-
cesses is limited. Physical and chemical constraints define the range in
which the biological processes can viably operate. The operating range of
the microbiological processes in turn puts a natural limit on the spread of
tolerance thresholds. As the spread of tolerance thresholds is described by
the shape parameter of the log-logistic threshold distribution β, β is ametric
for the physiologically possible variability of the microbiological processes
involved in the toxic response. For species that share receptors and path-
ways, and therefore the microbiological processes, β should be similar.

We want to point out that the median of the tolerance threshold distri-
bution mw is not shared across species, as no similar physiological limits
exist for the centre of the distribution. Instead, it can be assumed that the
median of the threshold distribution depends on the species-specific
bioconcentration factor or the density of susceptible receptors. Receptor
density and affinity has been found to affect sensitivity of species. For exam-
ple, for Chironomidae it was assumed that their comparably high densities
of high affinity nicotinic acetylcholine receptors contribute to their distinct
sensitivity to neonicotinoids. Density and affinity was particularly high for
larvae (Maloney et al., 2021).
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2.1.3. Joint GUTS-RED for multiple related species
The derived mechanistic GUTS parameter relationships in Eq. (6) con-

tain information at the level of species groups that is ignored in standard
single-species GUTS-RED-IT. This group-level information is that the
shape parameter β is equal for species that similarly respond to a common
mechanism of toxicity. Jointly modelling GUTS-RED-IT for several species
can exploit this mechanistic relation to constrain the species-specific
GUTS-RED parameters (in particular β).

Jointly modelling an ensemble of N species reduces the number of pa-
rameters byN-1 compared tomodelling the species separately. Considering
one toxicokinetic and two toxicodynamic parameters, the joint model con-
tains 2 × N + 1 calibration parameters. An R-package implementation of
GUTS-RED for single and joint species modelling is provided in Supporting
Material S2.

2.2. Testing the theory

2.2.1. Test system
We tested the theory on empirical survival data from toxicity studies of

the insecticideflupyradifurone (Nauen et al., 2015) and 8 arthropod species
(including insects and malacostraca), i.e. Asellus aquaticus, Chaoborus spec.,
Chironomus riparius, Cloeon dipterum, Crangonyx pseudogracilis, Gammarus
roeselii,Hyalella azteca and Seratella ignita, which are common species to as-
sess the risk of insecticides to arthropods in ERA. An overview on the toxic-
ity tests is provided in Table 1 and further detail in Supporting Material S3.

Flupyradifurone is an agonist of insect nicotinic acetylcholine receptors
(nAChRs). Even though post-transcriptional processes increase diversity of
the small nAChR gene family (Jones and Sattelle, 2010), we expect that the
single binding site of flupyradifurone and low cross-resistance to
imidacloprid or cyantraniliprole demonstrated for aphids or whiteflies
(Nauen et al., 2015; Wang et al., 2020) reduces diversity of AOP across in-
sects and other arthropods. Therefore, the test system should provide
shared receptors and pathways and thus fulfil the assumption underlying
the theory.

2.2.2. Model calibration
Theory tests relied on GUTS-RED calibrations and predictions with the

calibrated models. Therefore, we first describe the calibration and predic-
tion procedure, before explaining the theory tests.

GUTS-RED model parameters were calibrated separately or jointly to
the toxicity test data for the eight species. This was conducted with the R-
package GUTS (v. 1.2.3; Albert et al., 2022). The recently updated package
provides for time variable exposure a stable numerical GUTS-RED-SD
solver (Albert et al., 2016) and a fast analytical GUTS-RED-IT.

To estimate the joint distribution of model parameters, we used the
Bayesian calibration procedure suggested by Albert et al. (2016) for this
GUTS implementation. We extended the procedure to ensure thorough
evaluation of parameter uncertainties.Wewidely explored the potential pa-
rameter space with multiple MCMC-chains (10 for calibrating GUTS-RED
for single species, 20 for jointly calibrating GUTS-RED; 106 iterations
each). The chains were initialized with automatically selected and random-
ized initial parameter values. Suitable initial values were chosen within the
range of the wide uniform priors according to the characteristics of the dif-
ferent toxicity experiments. From the set of fitted MCMC chains, the three
Table 1
Overview on toxicity tests.

Species Temperature [±2 °C] Test duration [h]

Asellus aquaticus 20 96
Chaoborus sp. 20 48
Chironomus riparius 20 48
Cloeon dipterum 20 48, 672
Crangonyx pseudogracilis 20 96
Gammarus roeselii 20 96
Hyalella azteca 20 96
Seratella ignita 12 48

4

best fitting were selected. Their last 105 iterations after thinning by 20
were used in our analysis. This procedure provided reasonable estimates
of GUTS-RED parameter distributions. For details see Supporting Material
S4.

We evaluated calibration quality in terms of themodels' ability to repro-
duce the empirically measured survival tests from which the models were
calibrated. To reflect the suggested practice in ERA (see also Brock et al.,
2021), we applied the metrics recommended in EFSA PPR Panel et al.
(2018). These are the normalised rootmean square error (NRMSE), the pos-
terior prediction check (PPC) and the survival-probability prediction error
(SPPE).

2.2.3. Model predictions
The separately and the jointly calibrated GUTS-RED were used for

predictions under different dynamic exposure scenarios (i.e. time series
of the concentration of the toxic compound in water). The set of 11 ex-
posure scenarios (Bayer, 2018) had previously been modelled following
recommendations of the FOCUS Surface water Scenarios workgroup
(2015) and represents realistic surface water concentrations (PECsw)
from application of flupyradifurone to legumes ignoring mitigations
such as buffer zones. The exposure scenarios are displayed in
Supporting Material S5.

We predicted the factor by which an exposure time series must be mul-
tiplied such that 50 % of individuals survive until the end of the exposure
scenario (LP50). LP50 is a common metric in risk assessment of pesticides
(Ashauer et al., 2013; Baudrot and Charles, 2019; EFSA PPR Panel et al.,
2018).

We predicted LP50 for a sample of 5000 parameter sets that were ran-
domly drawn from the posterior distributions of the model parameters.
To isolate the toxic effect, we ignored backgroundmortality (hb=0) in pre-
dictions of LP50. This quantifies effects relative to controls, as is common
practice in ecotoxicology.

2.2.4. Theory tests
The theory assumes that, for a givenmechanism of toxicity, the strength

of a toxic effect is driven by the amount of compound reaching the target
site and that this is independent of the type of compound or taxon. This as-
sumption cannot be tested directly. However, evidence for its appropriate-
ness can be collected indirectly by testing consequences of the theory and
the suitability of its application in joint GUTS-RED.

We follow three approaches to test the theory.

1. GUTS-RED parameter relations in separately calibrated models: We
tested whether for the separately calibrated GUTS-RED-IT, the
shape parameters β fitted for the different species are similar as ex-
pected from Eq. (6). For this purpose, we pooled posterior estimates
of β from the separately calibrated GUTS-RED-IT, randomly drew a
sample of 15,000 values and calculated its 95 % credible interval.
We then calculated the percentage of species-specific β estimates
that were comprised in the 95 % credible interval of the pooled
sample.

2. Model performance: We compared model performance of GUTS-
RED-IT calibrated either jointly from all species or for each species
separately. A comparable or better performance (i.e. lower value of
4 h pulses 8 h pulses 20–48 h pulse Static exposure

x x x
x x x
x x x
x x x
x x x

x
x x
x x
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the widely applicable information criterion WAIC; Gelman et al.,
2014; Watanabe, 2010) of the jointly fitted GUTS-RED supports
the theory. WAIC1 and WAIC2 were calculated as suggested in
Gelman et al. (2014) for all GUTS-RED calibrated separately or
jointly. Samples of size 104 were randomly drawn from the posterior
distributions to calculate WAIC.

3. Prediction uncertainty: We compared lethal profile (LP50) predic-
tions from GUTS-RED-IT that were either calibrated jointly or sep-
arately. We expected that incorporating the additional information
shared in the species group reduces uncertainty of predictions for
the different species. For this reason, we particularly compared
the width of the 95 % credible intervals of LP50 predictions.
Fig. 1. Fit of calibration data for separately calibrated GUTS-RED-IT (C. pseudogracilis). D
interval), fitted scaled damage concentrations (yellow line: median fit, yellow dashed l
survival data to which the model was calibrated are displayed as black circles along
exposure type (columns) and exposure intensity (rows).

5

3. Results

3.1. Model calibration

GUTS-RED-IT was calibrated separately for each of the species and
jointly for all species. For each of the species, the calibrated models gener-
ally reproduced the calibration data well at low and high concentration
levels. However, at intermediate levels model fits matched measured sur-
vival less closely (see Fig. 1 for an example fit to data and Supporting Mate-
rial S4). The criteria indicated an intermediate fit quality (NRMSE: 13–39,
PPC: 51–84, SPPE:−52–34) but varied between species (Supporting Mate-
rial S4). Best model fits were achieved for G. roeselii and S. ignita.
isplayed are fitted survival over time (black line: median fit, grey line: 95%-credible
ine: 95 %-credible interval) and exposure concentrations (green shade). Empirical
with their error bars that represent Wilson score intervals. Panels segregate by

Image of Fig. 1


Table 2
Performance of separately and jointly fitted GUTS-RED-IT models.

Calibration Log pointwise predictive density Effective
number of
parameters

Widely applicable
information
criterion

lppd pWAIC1 pWAIC2 WAIC1 WAIC2

Separate −721 56 67 1554 1577
Joint −745 40 44 1570 1579
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Nevertheless, also the worst fits for C. dipterum and Chaoborus spec. did not
critically miss the quality criteria.

GUTS-RED-IT calibrations were limited by correlations between param-
eters (Supporting Material S4). Correlations between the dominant rate
constant kD and the median of the threshold distribution mw, ranged be-
tween 0.6 and 1.0. This strong parameter dependence reflected in wide
marginal posterior distributions or, particularly for the joined species cali-
bration, in multimodal distributions along the relation between the
species-specific parameters (e.g. C. riparius).

For GUTS-RED-SD, fit quality metrics indicated suitable calibrations for
most species. However, the joint calibration, did not provide a unique solu-
tion for the expected parameter relation, which might have affected esti-
mates of other GUTS parameters for all species (for details see Supporting
Materials S1 and S4).

3.2. Test of theory

3.2.1. GUTS-RED parameter relations in separately calibrated models
For GUTS-RED IT, pooling the separately estimated shape parameters β

across all species resulted in a median β = 2.20 and a 95 % CI of [1.26,
4.53]. This 95 %-CI comprised all individually estimated β values for five
of the species and at least 80 % of individual β estimates for the remaining
three species (Fig. 2).

3.2.2. Model performance
For GUTS-RED-IT model performance was similar for the two calibra-

tion approaches (Table 2). Fitting one joint threshold shape parameter β re-
duced the penalties (pWAIC1 and pWAIC2) compared to the separate
calibration approach, thus, accounting for the reduction of degrees of free-
dom in the joint model.

3.2.3. Prediction uncertainty
Lethal profile LP50 predictions with the jointly and the separately cali-

brated GUTS-RED-IT matched each other (Fig. 3A). Only in case of species
Chaoborus spec. the jointly calibrated model predicted lower LP50. Both ap-
proaches predicted lower LP50 for insects compared to malacostraca, apart
from S. ignita.

Prediction uncertainty of the jointly calibrated GUTS-RED-IT (Fig. 3B)
was equal (mainly malacostraca) or lower (mostly insecta) than that of
the species-specific models.
Fig. 2. Shape parameter β across species. Black dots and error bars show median
and 95 %-CI of the separately calibrated parameters. The blue vertical line and
rectangle indicate median and 95 % CI of the pooled β estimates.
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3.2.4. Summary of theory check
The evidence supported that the shape parameter of threshold distribu-

tion β (GUTS-RED-IT) is similar for related species. In particular, separately
calibrated β did not differ relevantly from the pooled estimate. Further, the
jointly calibratedmodel performed equally to the separately calibrated one,
and its prediction uncertainty was either equal or lower.

The evidencewas less clear for GUTS-RED-SD (SupportingMaterial S1).
The estimated slope comprised the expected value of −1 (Gergs et al.,
2019; Jager and Kooijman, 2009), which confirmed the theory. However,
the jointly calibrated model performed worse compared to the separately
calibrated models and did not show a reduction in prediction uncertainty.
4. Discussion

Shared relations across taxa among toxicodynamic parameters can be
expected if AOPs are shared e.g. via orthologs (Spurgeon et al., 2020). For
the stochastic death model (GUTS-RED-SD) theory suggests that the prod-
uct of the TD parameters is conserved (Gergs et al., 2019; Jager and
Kooijman, 2009 and Supporting Material S1). Here, we tested, if the theory
can be extended to the individual tolerancemodel (GUTS-RED-IT). Further,
we investigated, if a shared relation of TD parameters can be exploited for
jointly modelling GUTS-RED across species. By complementing the species
level information used for standard single species GUTS-RED modelling
with information at the level of the species group, we aimed at reducing un-
certainty of GUTS-RED predictions.

We found that the shape parameter of the tolerance distribution β in
GUTS-RED-IT is constant across species with shared receptors and path-
ways. This theoretical finding extends the previous work on GUTS-RED-
SD to the individual tolerance approach (GUTS-RED-IT).

We confirmed the theory for eight arthropod species responding to the
insecticide flupyradifurone. The shape parameter β of the threshold distri-
bution of GUTS-RED-IT was shared, which strongly supported our theoret-
ical derivation. The similar toxic response can be expected because
flupyradifurone binds at a single site (Nauen et al., 2015) to the small
nAChR gene family (Jones and Sattelle, 2010). Some heterogeneity
among arthropods can be expected due to species-specific detoxification
by metabolization of flupyradifurone involving P450 enzymes (e.g. Haas
et al., 2021; Wang et al., 2020).

Further support provides a reanalysis (Supporting Material S6) of previ-
ous GUTS-RED-IT modelling considering the response of fish to
benzovindiflupyr (Ashauer et al., 2013) and the response of macroinverte-
brates to imidacloprid (Focks et al., 2018), which showed that ,in each
study, species shared a similar shape parameter β. For GUTS-RED-SD our
reanalysis of the data confirmed previous findings (Gergs et al., 2019;
Jager and Kooijman, 2009) that the product of TD-parameters is similar
across species when calibrating GUTS for each of the single species.

A reanalysis (Supporting Material S6) of arthropod species to chlorpyr-
ifos (Brock et al., 2021) as well as macroinvertebrate species to
cypermethrin (Dalhoff et al., 2020) revealed that the species might be
grouped according to the relations of TD parameters. For each of these
two studies, two groups were identified that clearly could be distinguished
according to parameter β (GUTS-RED-IT). Furthermore, for Brock et al.
(2021), for which sufficient data was available, the product of TD parame-
ters in the GUTS-RED-SD model roughly grouped, too. Within the groups,
relationships between TD parameters supported the theory. As these

Image of Fig. 2
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Fig. 3. LP50 predictions (A) and prediction uncertainties (size of 95 %-CI - B) compared between GUTS-RED-IT that are jointly fitted to all species data sets (y-axis) and
separately fitted for the species (x-axis). Each point represents the predictions for a specific exposure scenario. If points lie below the brown 1:1 line, predictions with the
jointly calibrated model are more conservative (A) or more precise (B) than predictions with the separately calibrated models. Insecta marked by dots, malacostraca by
open squares.
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relationships are only expected if species share receptors and pathways, the
grouping suggests that arthropods might respond to chlorpyrifos in two dif-
ferentways (see also Jager and Kooijman, 2009). Van denBerg et al. (2021)
warn that for extrapolation of species sensitivity, care must be taken to
group species according to their mode of action. Our reanalysis suggests
that grouping the species by their sharedGUTS-parameter relations is an in-
dication of potentially differing molecular toxic processes.

The assumption that the toxic response at the target site is shared relates
only to toxicodynamics. Therefore, differences in species sensitivity are
likely related to variance in toxicokinetics and bioconcentration (see also
van den Berg et al., 2021 and references therein with particular respect to
narcosis). Different processes and factors can interfere with transport of
compound molecules to the target site and therefore affect species sensitiv-
ity. For example, the butenolide flupyradifurone is taken up slowly by
honey bees (Apis mellifera) and subsequently degraded into practically
non-toxic metabolites (Haas et al., 2021). Typically, traits related to body
size determine the uptake of the compound, while traits related to an exo-
skeleton and respiration of dissolved oxygen affected elimination. Lipid
content and surface area played roles for BCF (Rubach et al., 2012). How-
ever, accumulation at other than the target site was shown to reduce sensi-
tivity (Nyman et al., 2014). As these studies were conducted on aquatic
vertebrates, they might be representative for the variance in sensitivity ob-
served here. But the influence of TK traits on sensitivity can be questioned,
because their predictive power was low (Spurgeon et al., 2020).

Nevertheless, the joint-GUTS (as it is based on the GUTS-RED approach)
models the impact of TK processes subsumed in the scaled damage. If data
on internal concentration are available, easily even more elaborate TK-
processes can be included in the joint-GUTS, because the cross-species rela-
tions among parameters are limited to TD parameters. Thus, the theory is a
consistent basis for cross-species extrapolations of toxic responses in the en-
tire GUTS framework.

This study provided both a novel GUTS approach for jointly modelling
survival of taxa with shared receptors and pathways and a testing architec-
ture to verify whether species-specific survival data support joint model-
ling. We cannot exclude that difficulties in calibrating the models affected
our tests of the theory. Calibration was difficult for several reasons.

First, in interpreting the empirical survival data, we conservatively as-
sumed that an immobile individual can be considered dead. This assump-
tion reflected that immobility strongly reduces survival in nature (e.g. due
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to reduced foraging or increased predation). However, in the laboratory
studies with short exposure pulse, individuals were observed to become ac-
tive after exposure ceased. Therefore, our assumption artificially increased
the mortality effect in pulse studies, reducing comparability to studies with
longer exposure.

Second, empirical data indicated some delayed mortality (i.e. individ-
uals died sometime after the exposure ceased – see e.g. Chaoborus spec.) hy-
pothetically as a result of slow elimination of the compound from the
organism at test conditions. Differences between toxicokinetic uptake and
elimination are not captured by the reduced version GUTS-RED but require
the full GUTS (Jager et al., 2011). Here, scarcity of information on internal
concentrations required application of GUTS-REDwhich likely let to uncer-
tainty in the estimate of the dominant rate constant kD with impact on esti-
mation of toxicodynamic parameters.

Third, limited data in conjunction with the model structure are known
to complicate GUTS-RED calibration and compromise identifiability from
standard toxicity tests (e.g. Jager and Ashauer, 2018), e.g. due to damage
Dw(t) as a latent variable. Several approaches have been developed with
rather detailed strategies to solving the differential equations and calibrat-
ing the model (Albert et al., 2016; Baudrot and Charles, 2021; Delignette-
Muller et al., 2017; Jager, 2021). In this study, particularly for GUTS-
RED-SD (Supporting Material S1), the calibration algorithm - designed to
capture a wide range of the parameter space - seemed to result in MCMC
chains that sometimes did not fully converge to the same posterior distribu-
tion. This occurred despite ameliorating techniques, which let to multi-
modal parameter estimates (Supporting Material S3). The multimodal
parameter estimate approximates model parameter uncertainty. However,
this approximation is coarse for the theory test that is based on comparison
among variances of the separately and jointly calibrated models. We sus-
pect that for GUTS-RED-SD the multimodal estimate of the joining param-
eter intercept m confused the test. Considering the complexity to calibrate
GUTS-RED even for single species, calibration issues can be expected for
the joint calibration to multiple species. Future research should improve
and generalize techniques to calibrate the joint model for example by ex-
tending prior knowledge on the joining parameter or tailor the calibration
algorithms, which was beyond the scope of this study.

Finally, we point out that our comparison is slightly biased in favour of
the separately calibrated models. As common practice, we separately cali-
brated the species-specific GUTS-RED, which imposes the prior knowledge

Image of Fig. 3
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that GUTS-parameters that are specific for one species cannot influence pa-
rameter estimates for another species. This approach artificially split an
8 × 3 = 24 parameters calibration problem into 8 separate calibration
problems with 3 parameters each. Theoretically, these problems are equiv-
alent. Yet, practically solving the 8 separate calibration tasks is much sim-
pler. Therefore, it is remarkable that jointly and separately calibrated
GUTS-RED-IT performed similarly.
4.1. Potentials of jointly modelling species

We developed GUTS-RED to jointly model survival of taxa with shared
receptors and pathways. The joint model utilises the biological relation
among toxicodynamic parameters across species, which allows
constraining species-specific parameters from information at the species
group level. This additional information helped to reduce the number of pa-
rameters to calibrate and constrained the joined parameters to higher pre-
cision. The more precisely estimated parameters increased the precision
of projections. Importantly, prediction accuracy of the jointmodel was sim-
ilar to the precision of the separate models. Therefore, the additional infor-
mation that was shared across the species, increased the reliability of the
model predictions.

Sharing information across species has been useful in other areas of
ecology, where jointlymodelling species distributions could indicate poten-
tial associations among species by analysing the co-occurrence pattern
(Ovaskainen et al., 2016) or opportunistic observations of occurrences of
several species were integrated to improve reliability of model calibrations
(Bradter et al., 2018). Here we found for GUTS-RED-IT that joint modelling
improved prediction reliability by reducing uncertainty without
compromising accuracy.

Joint GUTS modelling for multiple species has potential for a wide
range of chemical compounds that trigger toxicodynamic processes that
are shared across taxa. Chemicals that are designed to interfere with funda-
mental physiological processes, such as plant protection products, often
have ortholog molecular targets (Verbruggen et al., 2018). Spurgeon et al.
(2020) listed phylogenetic signature in the sensitivity of amphibian tad-
poles to endosulfan (Hammond et al., 2012; Jones et al., 2009) or copper
sulfate (Chiari et al., 2015), however the signal in response to glyphosate
was low (Relyea and Jones, 2009). Also fish and amphibians showed a phy-
logenetic signal to chloride, which, however, was not found among macro-
invertebrates (Brady et al., 2017). As these studies related, phylogenetic
relatedness to apical endpoints, the involvedmolecular processes remained
unclear. In contrast, phylogenetic structure among arthropods was identi-
fied for the two genes relevant to acetylcholinesteresa (Kaur et al., 2015;
as described in Spurgeon et al., 2020), the target for organophosphates. Par-
ticularly, resistance of the Salmon louse (Lepeophtheirus salmonis) might be
related to the similarity of these genes, while for other species these genes
were distinct (Kaur et al., 2015). Further, the nicotinic acetylcholine recep-
tor has an ortholog binding site (Erdmanis et al., 2012; Spurgeon et al.,
2020), though point mutations were associated with lower sensitivity to
necotinoids of the aphidMyzus persicae (Bass et al., 2011) and several tick
species (Erdmanis et al., 2012).

Phylogenetic structure among molecular targets has been suggested as
predictor for species sensitivity (Spurgeon et al., 2020), as these might re-
flect conservation of the target and subsequent processes along an adverse
outcome pathway.

An AOP is a cascade of physiological processes. It is initiated by the in-
teraction of a compound with a molecular target but continues with biolog-
ical processes (so called key events) that are independent of the compound.
Therefore, by binding to similar receptors or triggering similar key events,
different compounds can initiate similar AOPs (Fay et al., 2017) and there-
fore fulfil the assumption of joint GUTSmodelling. Globally coordinated ef-
forts (https://aopkb.oecd.org/index.html) quickly advance AOP
development. Nevertheless, AOPs comprise detailed physiological informa-
tion across scales of biological organization, and construction of an AOP re-
quires extensive research (Wang et al., 2021), such that currently only few
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quantified AOPs are available. Therefore, their wide applicability in extrap-
olation of species sensitivity is questionable (van den Berg et al., 2021).

We point out that joint GUTS modelling can be conducted without de-
tailed knowledge of AOPs or even AOP networks. Instead, the model is
built from standard toxicity tests. Data from toxicity tests aggregately com-
prise the outcome of the underlying complex microbiological processes in
terms of apical endpoints. Constructing the joint GUTS at this aggregated
level of organization intrinsically includes the outcome of the microbiolog-
ical process without the requirement that their mechanisms need to be
known. Therefore, joint GUTS are comparatively easy to construct. Their
data requirement narrows down to whole-organism mortality measured
in standard toxicity tests. Suitability of newly constructed joint GUTS can
be tested via the suggested check of theory. Without the cost of additional
data the check identifies whether the toxic response of different taxa is suf-
ficiently similar to justify joint GUTS modelling.

As GUTS-RED only considers lethal effects, an expansion to joint model-
ling of sublethal effects would be desirable. Dynamic energy budget models
(DEB; Kooijman, 2009) with a toxicological module (DEBtox; Baas et al.,
2018; Sherborne et al., 2020) would be a promising starting point, as
their treatment of damage dynamics was recently aligned with GUTS-RED
(Jager, 2020), which allows for a structurally similar separation of TK
and TD as considered here. Thus, extending our ecotoxicological and math-
ematical reasoning could help deriving cross-species relations among pa-
rameters of the more complex DEBtox models. The approach seems
promising as metabolic rates and toxic sensitivity were shown to be related
across taxa (Baas and Kooijman, 2015).

DEB has been integrated in individual-based (Gergs et al., 2014, 2016;
Martin et al., 2012) or integral projection models (Smallegange et al.,
2017) to upscale organismal processes to the population-level. Combining
such models for several species or compounds as well as further stressors
provides the potential to address ecotoxicological effects at ecosystem
level, as recently demanded for ERA (Topping et al., 2020). We argue that
such models should consider a potentially dependent toxicodynamic re-
sponse among related species,whichmight simplify cross-species interpola-
tion (as illustrated in Gergs et al., 2019).

4.2. Potential in environmental risk assessment

With the aim to limit adverse effects on non-target species, extrapola-
tion of risk across differently sensitive taxa is central to ERAof PPPs. Assum-
ing that AOPs can be conserved among species (Spurgeon et al., 2020), our
results indicate that variation of sensitivity across such related species is
mainly driven by differences in toxicokinetics, because toxicodynamic pro-
cesses are shared. Exploiting the shared TDprocesses in jointmodels can re-
duce uncertainty of risk predictions across species and contribute to more
reliable cross-species extrapolations in ERA.

Nevertheless, reliable cross-species extrapolations require knowl-
edge on several species' sensitivity. In the European aquatic risk as-
sessment species sensitivity distributions (SSD; Aldenberg et al.,
2002) are constructed from at least 5 vertebrate or 8 invertebrate spe-
cies (EFSA PPR Panel, 2013). Basing SSD on GUTS-RED analyses re-
spectively amounts to 15 or 24 toxicity tests. Even though, some
obligatory standard toxicity tests can be reused for model calibration,
for model validation at least 10 to 16 additional tests are recom-
mended (EFSA PPR Panel et al., 2018), which is undesirable in the
context of reducing animal testing (Jang et al., 2014).

We suggest joint GUTS-REDmodelling as means to reduce the amount of
validation studies. A joint GUTS-RED represents survival of many species in
one single model. Projection quality of this model can be validated from
any subset of the species. Validating the model from a subset of one or two
species strongly reduces the amount of animal testing and validation effort.
In ERA, the most sensitive species seem the likely candidates for validating
a joint GUTS-RED in order to ensure reliability of particularly critical high
risk assessments.

Further, joint species modelling provides potential to extrapolate sensi-
tivity of untested species from known physiological parameters such as the
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metabolic rate. Baas and Kooijman (2015) found that on the log-scale
metabolic rate linearly decreases with the no effects concentration
(NEC) across species exposed to a toxic compound. The NEC is equiv-
alent to the threshold concentration in GUTS-RED-SD and can be ap-
proximated for GUTS-RED-IT by solving Eq. (3) assuming a high
survival rate over infinite time. The relation between GUTS TD param-
eters and the metabolic rate can be complemented by the relation of
TD parameters across species derived here, which allows direct ex-
trapolation of survival across species if the species metabolic rate is
known. As metabolic rates have been derived for many species
(Marques et al., 2018), a mechanistic cross-species extrapolation
(van den Berg et al., 2021) of species sensitivities can soon be feasible.

5. Conclusions

This study provided new indications that species share toxicologi-
cal response mechanisms such that toxicological effects can be inter-
polated across species. We extended previous theory (Jager and
Kooijman, 2009) that suggested relations among toxicodynamic ef-
fects across species or compounds if species share receptors and com-
pounds bind to similar target sites (Gergs et al., 2019). The theory was
empirically underpinned for GUTS-RED-SD (Gergs et al., 2019; Jager
and Kooijman, 2009) and for the first time here in the context of
GUTS-RED-IT. Such that linking molecular processes to toxic effects
at organism-level becomes more feasible.

Further, we derived a GUTS-RED approach to jointly across species model
lethal effects of a compound. In ERA, estimation of species sensitivity across a
group of species usually is the task of SSD or other assemblage-based cross-
species interpolation methods (EFSA PPR Panel, 2013). Joint GUTS-RED
might transfer TKTDmodels froma single species to a species group approach.
The theoretical consideration that shared receptors and pathways link
toxicodynamic parameters across species implies that they also constrain the
distribution of sensitivities of related species. As such joint TKTD modelling
across species has the potential to linkmolecular toxicological processes to ad-
verse effects at the level of groups of species that share receptors and target
sites.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.159266.
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