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Abstract: In the regulatory environmental risk assessment of plant protection products, the exposure tested in standard
toxicity tests assumes simple exposure dynamics, such as constant exposure at the first stage of testing. However, envi-
ronmental exposure can be highly dynamic. A species response to exposure is governed by toxicokinetics (TK) and tox-
icodynamics (TD). Therefore, it can be expected that the sensitivity of a species to a substance is dependent on the interplay
of TKTD processes with the dynamics of the exposure. We investigated whether exposure dynamics affects species sensitivity
of five fish species and if their sensitivity rankings differ among exposure profiles. We analyzed individual survival under
projected surface water exposure to benzovindiflupyr. For this purpose, we calibrated compound‐ and species‐specific
reduced general unified threshold models of survival (GUTS‐RED) models from standard laboratory toxicity data with the
assumptions of stochastic death and individual tolerance. Using the calibrated models, we generated species sensitivity
distributions based on median lethal profile multiplication factors for three characteristic exposure profiles. The analysis was
performed using different GUTS‐RED implementations: openGUTS (MATLAB® and Windows® versions) and the R package
morse. The sensitivity rankings of the fish species changed as a function of exposure profile. For a multiple‐peak scenario,
rainbow trout was the most sensitive species. For a single peak followed by a slow concentration decline the most sensitive
species was the fathead minnow (GUTS‐RED‐stochastic death) or the common carp (GUTS‐RED‐individual tolerance). Our
results suggest that a single most sensitive species cannot be defined for all situations, all exposure profiles, and both GUTS‐
RED variants. Environ Toxicol Chem 2022;41:1732–1741. © 2022 Syngenta. Environmental Toxicology and Chemistry
published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
For environmental risk assessment (ERA) of plant protection

products (PPPs), the toxic risk for a species group is statistically
extrapolated from the estimated risks of a sample of repre-
sentive species. The European Food Safety Authority (EFSA)
Panel on Plant Protection Products and Their Residues (PPR;
PPR et al., 2018) suggests extrapolation metrics that are
based on aggregating the distribution of the species' sensitivity

(PPR, 2013). These include (1) the highest estimated risk, as-
suming that the risk to the most sensitive species conservatively
represents the risk to the group, and (2) the species sensitivity
distribution (SSD; Aldenberg et al., 2002). The SSD assumes
that the tested species are a representative group in terms
of risk from which the risk to the 5% most sensitive species can
be estimated. Thus, these metrics allow extrapolation of the
species group risk from selected representative species for
which the risk was determined in standard toxicity tests.

In regulatory ERA, risk is translated into the level of exposure
that is deemed acceptable to an affected species. The accept-
able exposure is then compared with the predicted environ-
mental concentration (PEC). Environmental exposure can be
highly dynamic. In contrast, the exposure tested in standard
toxicity tests assumes simple exposure dynamics, such as con-
stant exposure (Organisation for Economic Cooperation and
Development, 1992), at the first‐tier level of testing. These simple
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exposure dynamics hardly represent variable environmental ex-
posure dynamics, and it is an open question how to best relate
exposures determined from laboratory studies to PEC values.

To account for this discrepancy in comparing acceptable
and environmental exposure, the standard regulatory risk as-
sessment defines safety factors. These safety factors are as-
sumed to indicate how much the critical exposure determined
from toxicity tests must exceed the maximal PEC to be regu-
latorily acceptable. This approach neglects the dynamics of
environmental exposure.

Recent toxicokinetic–toxicodynamic (TKTD) modeling ap-
proaches provide refined ecotoxicological assessment of the
time‐variable PECs (e.g., time series of concentrations in water
bodies). Such models are calibrated to standard toxicity tests.
Using the calibrated models, expected toxicity‐related effects
can be predicted based on the full TKTD dynamics. Hence,
TKTD models combine the information contained in standard
toxicity tests and time‐variable exposure profiles. The EFSA
details the potential application of TKTD modeling in the
European regulatory ERA for aquatic species (PPR et al., 2018).
To estimate the risk of PPP to species groups with TKTD
models, the EFSA suggests extending the metrics that are
applied in the standard risk assessment to extrapolate the risks
from the representative species to their group. Yet, because of
different abilities of TKTD models compared with standard
ecotoxicological statistical analyses of toxicity tests, the ex-
tension is not straightforward. For example, TKTD models
provide estimates of prediction uncertainty, which can be in-
corporated into SSD assessments (Charles et al., 2021).

We investigated whether the consideration of dynamics in
PECs affects the estimates of species sensitivities and thus the
risk assessment of species groups. We hypothesized that an
impact would be expected because toxicological mechanisms
differ among species, such as how a toxicant is taken up and
distributed in an individual's body (TK) and how the toxicant
affects the species performance (TD; Ashauer & Jager, 2018;
Gergs et al., 2019).

We analyzed the lethal risk to fish in a realistic, dynamic
environmental exposure scenario using benzovindiflupyr. For
this purpose, we estimated the species‐specific risk to five fish
species using the general unified threshold models of survival
(GUTS; Jager et al., 2011). This is a TKTD modeling approach
for the assessment of lethal effects. For each of the species
analyzed, GUTS models are calibrated based on observed
survival in standard toxicity tests. Using the calibrated models,
we predicted the species‐specific mortality risk under three
realistic PEC scenarios, that is, three different exposure con-
centration time series. For each exposure scenario, we ranked
the species according to their predicted risk and assessed both
the most sensitive species and the SSD. Robustness of results
was ensured by repeating the analysis with three software
implementations of the GUTS framework.

MATERIALS AND METHODS
In the present study we addressed (1) if different exposure

profiles and/or reduced GUTS (GUTS‐RED) variations lead to

differences in determining the most sensitive species, and (2) if
different software solutions lead to different calibration results
and different species sensitivities.

We used the data from Ashauer et al. (2013) that consist of
five acute toxicity tests and one early–life stage (ELS) toxicity test
on five fish species exposed to benzovindiflupyr. The five fish
species are common carp (Cyprinus carpio), fathead minnow
(Pimephales promelas), sheepshead minnow (Cyprinodon
variegatus), rainbow trout (Oncorhynchus mykiss), and bluegill
(Lepomis macrochirus).

Each exposure scenario used for calibration consisted of five
concentrations in addition to a control and a solvent control.
For all acute studies, the control and solvent control showed
similar survival and therefore were pooled by summing the
number of survivors for each time step.

The mean measured concentration of benzovindiflupyr in
the water deviated by >20% from the nominal value for
O. mykiss and Cyprinodon variegatus. To comply with recom-
mendations (PPR et al., 2018) and to apply a consistent meth-
odology across studies, mean measured concentrations were
used in GUTS calibrations for all species. In all control meas-
urements, concentrations did not exceed the limit of quantifi-
cation. Therefore, concentrations in control treatments could
be assumed to be zero.

For the ELS study (P. promelas), reported survival was cen-
sored in several steps prior to applying it for GUTS modeling:
(1) Because the GUTS‐RED approach cannot account for
changes in life stages, we ignore the prehatch phase in model
calibration. However, exposed eggs might carry over potential
effects to the fry stage. Therefore, empirically measured fry
survival might be decreased as a result of egg exposure.
Calibrating GUTS to such decreased fry survival leads to a
parametrization of the model, which we expect to lead to de-
creased survival in its model projections. (2) The reported
number of survivors did not monotonically decline over time.
Therefore, for each replicate, the observed number of survivors
was transformed by limiting the maximum number of observed
survivors at each time step to the value in the previous time
step. This transformation assumes that individuals were erro-
neously reported dead, potentially because of misinter-
pretation of the observed behavior or appearance. The
correction preserves the total number of reported individuals at
day 28 (the last day of the posthatch phase). (3) Next, for each
treatment level, replicates were pooled by summing the
number of survivors. (4) Finally, control and solvent control
were pooled by summing the number of survivors, in accord-
ance with the procedure for the acute data. Prior to pooling,
the similarity of the number of survivors in the control and
solvent control was statistically tested using statistical software
R, Ver 3.6.3 (R Foundation for Statistical Computing, 2020). No
significant difference in the number of survivors was observed
throughout the time series (Pr(>|z|)= 0.13) using a Cox
proportional hazard model (Andersen & Gill, 1982; Therneau,
2020; Therneau & Grambsch, 2000). In addition, no significant
difference between the number of survivors in the two controls
was found at the end of the ELS study using a two‐sided
t test (p= 0.45).

Fish sensitivity ranking depends on exposure profiles—Environmental Toxicology and Chemistry, 2022;41:1732–1741 1733

wileyonlinelibrary.com/ETC © 2022 Syngenta



The model
The GUTS (Jager et al., 2011) mechanistic modeling ap-

proach projects individual survival under temporally varying
exposure profiles. The conceptual background of GUTS has
been described in detail and is agreed on by the ERA modeling
community (Jager & Ashauer, 2018). In particular, the two re-
duced versions, with the assumptions of stochastic death and
individual tolerance, GUTS‐RED‐stochastic death and GUTS‐
RED‐individual tolerance, are suggested as models to analyze
the lethal effects of PPPs on test species in aquatic risk as-
sessments (PPR et al., 2018). For details, see Supporting
Information.

GUTS software implementations
We applied three different GUTS softwares, including two

openGUTS implementations (MATLAB® Ver 1.1 and Windows®

Ver 1.1) and the statistical software R (R Foundation for Stat-
istical Computing, 2020) package “morse” (Ver 3.2.5; Baudrot
et al., 2019). We chose these software implementations be-
cause openGUTS and morse are commonly used and well
documented (Baudrot & Charles, 2019, 2021; Charles
et al., 2021; Jager, 2019, 2021a). Moreover, these im-
plementations use the two main approaches for parameter
fitting, frequentist (openGUTS) and Bayesian (morse), de-
scribed in the EFSA opinion (PPR et al., 2018). The im-
plementation openGUTS MATLAB has the disadvantage that
MATLAB is a commercial software. Therefore, we also used the
new user‐friendly openGUTS standalone Windows Ver 1.1,
which was not part of the ring test of several GUTS‐RED im-
plementations (Jager & Ashauer, 2018). We tested these three
software versions to ensure that the findings are robust to im-
plementation uncertainty and to test the new openGUTS
standalone Windows Ver 1.1 on a case study using actual
fish data.

Parameter estimation
Calibration methods implemented in the software im-

plementations openGUTS and morse were used for parameter
fitting.

To estimate model parameter values from empirical survival
data, the openGUTS implementations use a frequentist ap-
proach (Jager, 2019, 2021a). The morse package applies the
Monte Carlo Markov chain to sample from the joint posterior of
the parameter values under a Bayesian framework (Baudrot
et al., 2019).

The openGUTS implementations offer two options for
dealing with estimation of background mortality: fitting it to the
observed survival in the control only or fitting it together with
the other parameters using the entire data set from one ex-
periment. The morse version used for calibrations in the
present study (Ver 3.2.5) does not yet offer the first option, so
all parameters were fitted together to increase model com-
parability. In the latest morse version, which was not published

at the time this part of the study was conducted, a fixed value
can be set as background mortality.

The available ELS toxicity test data did not conform to
recommendations for GUTS validation data (PPR et al., 2018,
Section 4.1.4.5). In contrast to Ashauer et al. (2013), where the
ELS test was used for validation, we decided to use these data
for model calibration, together with the acute toxicity data.
Using the ELS test for model calibration is a compromise that,
on the one hand, follows the EFSA suggestion to use all
available suitable data (PPR et al., 2018, Checklist 7d) and aim
to maximize the information used. On the other hand, the ELS
test design violates GUTS assumptions, for example, that an
organism must not change fundamentally during the test.
Using ELS data for calibration reduced parameter confidence
intervals and led to small changes in the point estimates of the
toxicity parameters (see Supporting Information, Figure S8).

In accordance with ethical recommendations to limit verte-
brate toxicity tests, no additional studies were conducted for
GUTS validation. Such studies are not always mandatory (PPR
et al., 2018, Section 7.7.2) considering the quality of the cali-
brated GUTS models and the multitude of test species. The
reduction of vertebrate tests is important (see European Union
regulation 283/2013 or EFSA 2021).

Lethal profile estimation (model use, predictions)
A lethal profile (LPx) is the factor with which an exposure

profile must be multiplied to predict x% mortality with GUTS
(Ashauer et al., 2013; Baudrot et al., 2019). We calculated LP50
values with the calibrated GUTS‐RED models (stochastic death
and individual tolerance), applying the inbuilt LPx calculation
routines of the implementations. For morse, we used the newly
available Ver 3.3.1 for this purpose, which predicts LP50 more
efficiently and reliably than previous versions.

We predicted LP50 for three characteristic exposure pro-
files. The exposure profiles were estimated with the FOCUS
SWASH 5.3 surface water models (PRZM 4.3.1, MACRO 5.5.4,
and TOXSWA 5.5.3), following the FOCUS surface water sce-
nario working group guidelines (FOCUS, 2001). As such, they
represent realistic worst‐case simulations for a hypothetical use
of benzovindiflupyr in Europe. The hourly resolved exposure
concentrations in surface waters were extracted from the
TOXSWA outfiles (parameter ConLiqWatLay [grams per cubic
meter]) and converted to exposure units (micrograms per liter)
to comply with the units of the calibrated GUTS‐RED models.
Extraction and unit conversion were performed within the R
framework (R Foundation for Statistical Computing, 2020). The
exposure profiles (here called A, B, and C) represent different
types of typical dynamic exposure patterns (Figure 1).

SSD estimation
The SSD approach aims at estimating the risk of a substance

for a group of species (Aldenberg et al., 2002), in the present
study fish; SSDs are cumulative probability distributions that
estimate the percentage of species of the group that are
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lethally affected by a given concentration of a chemical
(Aldenberg et al., 2002). The concentration that affects 5% of
species is referred to as the 5% hazard concentration
(PPR 2013, Section 8.4). The LP50 for 5% of species was de-
fined as the 5% hazard profiles (HP5; PPR et al., 2018, Chapter
3.2). Thus, HP5 is the factor with which an exposure profile
must be multiplied such that for 5% of species mortality is 50%
and for 95% of species mortality is <50%.

The R package ssdtools (Thorley & Schwarz, 2018) provides
the functions needed to fit SSDs using maximum likelihood and
model averaging. Hazard profile values (HP5) for each ex-
posure profile were calculated based on LP50 values (morse,
median; openGUTS, maximum likelihood) across species.

RESULTS
Parameter estimates

The three GUTS‐RED software implementations provided
generally similar parameter estimates (Figures 2 and 3; Sup-
porting Information, Tables S1–S6) for the parameter dominant
rate constant (kD), the GUTS‐RED‐stochastic death parameters
effect threshold, the killing rate (bw), as well as the GUTS‐RED‐
individual tolerance parameters threshold distribution median
and shape. Parameters estimated with morse differ from
openGUTS implementations, but median estimates are within
the confidence intervals of the openGUTS implementations. As
expected, both openGUTS versions calibrated parameters and
uncertainities in the same range. One bigger deviation was
observed for the killing rate (bw) for GUTS‐RED‐stochastic
death and species sheepshead minnow (see Figure 2A). The
MATLAB version estimated a higher best‐fit value than the
standalone version. However, the killing rate is not sensitive in
this case, and uncertainties ranged widely.

The visual assessment of the GUTS‐RED simulations was ac-
ceptable, and all quantitative performance criteria suggested by
PPR et al. (2018) were fulfilled (see Supporting Information,
Tables S1–S6).

Calibrated median parameter values from the morse soft-
ware were within the 95% uncertainty bounds of best‐fit values

estimated using the openGUTS versions, with a few exceptions.
Larger discrepancies were found when a parameter value was
not informed enough by the survival data. In these cases, the
estimates from the openGUTS implementations reached the
edge of the calibration search space. In contrast, for the morse
implementation automatically chosen priors prevented an es-
cape of the calibration algorithm. For three of five species
(sheepshead minnow, bluegill, and rainbow trout) openGUTS
implementations reached the edge of the calibration search
space for the parameter background mortality, and a low value
was estimated (see Figures 2 and 3). Lower values were esti-
mated with morse for the killing rate (bw) for all species com-
pared with the estimates with openGUTS, which likely is related
to the partially informative prior distribution peaking 1–2 orders
of magnitude lower than the posterior distribution. We note
that also prior distributions for the dominant rate constant (kD)
peaked lower than the posterior distributions, yet the morse
estimates coincided with openGUTS estimates (see morse re-
sults in Supporting Information). Therefore, it can be concluded
that the toxicity data were more informative for the parameter
kD than for the parameter bw.

LP50 predictions
For all scenarios LP50 values ranged from 14 to 440 (see

Figure 4; Supporting Information, S1–S5). The three GUTS‐RED
software implementations provided comparable LP50 pre-
dictions. The differences of the software implementations in
LP50 values were generally within the 95% uncertainty limits.
The LP50 values estimated with openGUTS implementations
were in some cases slightly higher than those estimated by
morse, but confidence intervals were overlapping.

Estimation of hazard concentrations (SSD)
Estimated HP5 values for our test exposure profiles ranged

from 9 to 33 (see Supporting Information, Table S7). Sheepshead
minnow and bluegill are the least sensitive species, and corre-
sponding LP50 values were in the range of 100 or higher,

FIGURE 1: Representative surface water exposure profiles, estimated with the FOCUS SWASH 5.3 surface water models (PRZM 4.3.1, MACRO
5.5.4, and TOXSWA 4.4.3), were used to calculate concentrations in surface waters. d= days.

Fish sensitivity ranking depends on exposure profiles—Environmental Toxicology and Chemistry, 2022;41:1732–1741 1735

wileyonlinelibrary.com/ETC © 2022 Syngenta



although bluegill was more sensitive than sheepshead minnow.
The sensitivity ranking of these two species was the same in all
situations and for all GUTS implementations. The three other
species, rainbow trout, fathead minnow, and common carp, were
more sensitive than the previously described species. Remark-
ably, their sensitivity ranking changed among exposure profiles
and models. For instance, for a multiple‐peak scenario (Scenario
C, Figure 1) the rainbow trout was the most sensitive species in
all GUTS implementations, for both GUTS‐RED‐stochastic death
and GUTS‐RED‐individual tolerance (see Figure 5C,F). However,
for a single peak followed by a slow concentration decline
(Scenario A, Figure 1) the most sensitive species was the fathead
minnow (GUTS‐RED‐stochastic death; see Figure 5A) or the
common carp (GUTS‐RED‐individual tolerance; see Figure 5D).
The change in sensitivity rankings as a function of exposure data

was also observed in simulation runs with morse, and the order of
fish species sometimes differed from the other implementations
(e.g., Supporting Information, Figure S7f).

DISCUSSION
The GUTS‐RED models were used to assess the potential

risk of time‐varying exposure profiles on fish species. Our
results suggest that choosing a single most sensitive species for
all situations, all exposure profiles, and both GUTS‐RED
variants (stochastic death and individual tolerance) is not
supported by the evidence in the present study. Instead, for
each profile at least two species were similarly sensitive. While
Cyprinus carpio and P. promelas were among the most

FIGURE 2: Model comparison for reduced general unified threshold models of survival of fathead minnow (GUTS‐RED‐stochastic death [SD]) across
five different fish species: (A) sheepshead minnow, (B) common carp, (C) bluegill, (D) rainbow trout, and (E) fathead minnow (calibration was
performed with acute and early life stage test). Estimated parameters for GUTS‐RED‐SD are dominant rate constant, threshold for effects, killing rate
constant, and background mortality. For openGUTS versions, the best fit (dot) and 95% confidence interval (horizontal line) are displayed; for morse,
the median (dot) and 95% credible intervals (horizontal line) of the posterior distributions are displayed. zw= threshold for effects; hb= background
mortality; kD= dominant rate constant; bw= killing rate constant.
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sensitive species for all profiles, O. mykiss was less sensitive in
Scenario A. Considering the LP50 estimates, we found a ten-
dency that the ranking of species changed, at least if we
focused on median estimates as is often done in the risk as-
sessment of PPPs.

We expect that changing species sensitivity rankings
across exposure profiles are related to species‐specific dif-
ferences in TK and TD. The dominant rate constant (kD) in the
GUTS‐RED models is a lumped parameter reflecting both TK
and damage dynamics. Its value is dominated by whichever
process is slower. Our results show that these processes
ranged from slow (P. promelas; kD = 0.28 day−1) to fast (O.
mykiss; kD = 144 day–1). Fast TK means that the internal con-
centration of the toxicant that ultimately exerts a toxic effect
closely follows the exposure dynamics. In contrast, slow TK

implies that the internal concentration “averages” the ex-
ternal exposure over time, leading to a dampening of ex-
posure peaks and internal concentrations that can be
accumulated over longer times. Similar interpretations can be
made for fast and slow damage dynamics. Fast damage dy-
namics means that the damage closely follows the internal
concentration of the toxicant. Slow damage dynamics implies
dampening of internal concentration peaks and damage ac-
cumulation over longer times. Therefore, the risk of a single
short spike affecting an individual is higher for O. mykiss than
for P. promelas. On the other hand, exposure over long pe-
riods is potentially more critical for P. promelas. We saw that
O. mykiss was less sensitive to Scenario A, a peak with a long
tailing, than to Scenarios B and C, one or more short and
sharp exposure peaks.

FIGURE 3: Model comparison for reduced general unified threshold models of survival of common carp (GUTS‐RED‐individual tolerance [IT]) across
five different fish species: (A) sheepshead minnow, (B) common carp, (C) bluegill, (D) rainbow trout, and (E) fathead minnow (calibration was
performed with acute and early life stage test). Estimated parameters for GUTS‐RED‐IT are dominant rate constant, median of the threshold
distribution, threshold distribution shape parameter, and background mortality. For openGUTS versions, the best fit (dot) and 95% confidence
interval (horizontal line) are displayed; for morse, the median (dot) and 95% credible intervals (horizontal line) of the posterior distributions are
displayed. mw=median of the threshold distribution; hb= background mortality; kD= dominant rate constant; beta= threshold distribution shape
parameter.
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Our LP50 predictions were robust among software im-
plementations for this case study. If, in a few cases, predictions
from the different softwares diverged, the discrepancy could
be attributed to weak information content of the experimental
data that impeded a reliable fit of parameters. Weak in-
formation is also often responsible for different results in soft-
ware implementation using different algorithms (Jager, 2021b).
For this reason, the consideration of uncertainties and their
incorporation into an ERA are of particular importance (Charles
et al., 2021). The similarity of model calibrations and pre-
dictions indicates that their different statistical approaches
similarly capture the information contained in calibration data.
Therefore, critical to the reliability of GUTS predictions is the
quality of calibration data rather than the technicalities of
model implementations. Our analysis also demonstrates the
robustness of the estimation of an HP5 endpoint to using
different software implementations for the SSD inputs.

Of the five species the three most sensitive show rather
similar sensitivity. This means for the SSD that all fish species in
the 10th to 50th percentiles show similar effects, and such a
close similarity of species sensitivity cannot be well represented

by an SSD fit (see, e.g., Figure 5B,C). Uncertainties of the SSD
fit may result in differences in HP5 values among the im-
plementations. The TKTD‐SSD approach or the estimation of
the HP5 values is not explained in detail in either the current
aquatic guideline (PPR, 2013) or the TKTD opinion (PPR
et al., 2018). Charles et al. (2021) recently compared different
approaches to calculate SSDs in a case study using data from
nontarget plants. Notably, the number of species is usually
higher in nontarget plant risk assessments (≥10 species) com-
pared with fish risk assessments (≥5 species). Charles et al.
(2021) focused on how the uncertainty of species sensitivity
estimates influences the SSD, something that is not normally
calculated in regulatory risk assessments. Similarly, in the future
the uncertainty from species sensitivity estimates (e.g., LP50)
could be propagated to SSD endpoints (e.g., HP5 values) for
fish for a more robust sensitivity assessment. However, defining
the best method for the fit of an SSD and the estimation of an
HP5 was not the focus of the present study.

For species P. promelas, we used results from an ELS test for
model calibration. In ELS studies, animals grow continously and
develop from yolk‐feeding to free‐feeding larvae. In principal,

FIGURE 4: Median lethal profile comparison for reduced general unified threshold models of survival of common carp (GUTS‐RED‐individual
tolerance [IT]) implementations (circle=morse, triangle= openGUTS MATLAB®, square= openGUTS standalone) across five different fish species:
sheepshead minnow, common carp, bluegill, rainbow trout, and fathead minnow (calibration was performed with acute and early life stage test) for
exposure Scenario C. For openGUTS versions, the best fit (dot) and 95% confidence interval (vertical line) are displayed; for morse, the median (dot)
and 95% credible intervals (vertical line) of the posterior distributions are displayed. LP50=median lethal profile.
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such physical developments cannot be covered by the GUTS‐
RED approach because often the toxic response of organisms
differs among life stages. Therefore, generally, ELS test data are
not modeled with GUTS. In our case, there was a very sensitive

phase with increased mortality on day 6. However, because the
mortality affected control and treatment levels, this mortality is
likely not toxicant‐related; and consequently, GUTS calibration
attributed it to background mortality (see, e.g., openGUTS

FIGURE 5: Species sensitivity distributions (SSDs; red line) are cumulative probability distributions that estimate the percentage of species that are
affected by a given concentration of a chemical. The concentration that affects 5% of the species is referred to as the 5% hazard concentration (black
dashed line). The SSD was built on the median lethal profile estimated with reduced general unified threshold models of survival (GUTS‐RED;
openGUTS standalone implementation is shown). Calibration for Pimephales promelas was performed using the acute and early life stage test.
(A–C) Results for fathead minnow GUTS‐RED‐stochastic death (SD); (D–F) results for common carp GUTS‐RED‐IT. Insets (A–C) describe exposure
profiles (shown in Figure 1). LP50=median lethal profile.
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standalone reports in the Supporting Information). An indication
could not be found that the toxic response of P. promelas
changed during the ELS test. Nevertheless, a priori, it is ques-
tionable whether the ELS test might bias model calibrations (life
stages differed from that in the acute test, and egg stage ex-
posure was ignored) or if the additional ELS information im-
proved the calibrations. Therefore, we repeated the calibration
ignoring the data from the ELS test. We found that parameter
uncertainties shrank for most of the toxicity‐related parameters
when the ELS test data were considered (for details, see Sup-
porting Information, Figure S9). Similarly, LP50 uncertainty was
reduced when considering ELS and acute test data in GUTS
calibrations (compare Figure 4 and Supporting Information,
Figures S1–S5, S9–S14), and the picture of species sensitivities
did not change (Supporting Information, Figure S15). The re-
duction of uncertainties suggests that in our case the in-
corporation of ELS data can improve GUTS calibration, even
though basic model assumptions are violated. This is helpful in
the context of reducing animal testing because available data
can efficiently be used, but it should be discussed case by case
whether violating the model assumptions can be accepted.
Further research is needed to generally assess when ELS test
data might be suitable for GUTS calibration.

Given that a single most sensitive species could not be
identified in this analysis and that the species‐sensitivity ranking
order might change among exposure profiles, it is unlikely that
a species showing highest sensitivity in a standard acute test
with simplistic exposure dynamics can be robustly considered
the most sensitive species in all potential environmental ex-
posure dynamics. This is consistent with the finding by Ashauer
et al. (2013) that, for the same species and similar exposure
profiles as in the present study, the species sensitivity pre-
dicted by the GUTS model depends on the exposure profile.
The finding that species‐sensitivity ranking changes depending
on the exposure profile has also been made for different spe-
cies of frog and fish exposed to malathion (Ashauer
et al., 2016). In the present study we find that even if the
ranking of species in the SSD changes, the risk assessment
endpoint derived from the SSD method, that is, the HP5, does
not change. Therefore, SSD‐based estimates of HP5 could be
considered more robust than approaches based on identifying
the most sensitive species for ERA.

Supporting Information—The Supporting Information is avail-
able on the Wiley Online Library at https://doi.org/10.1002/
etc.5348.
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