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Abstract: Toxicokinetic–toxicodynamic (TKTD) models simulate organismal uptake and elimination of a substance (TK) and its
effects on the organism (TD). The Reduced General Unified Threshold model of Survival (GUTS‐RED) is a TKTD modeling
framework that is well established for aquatic risk assessment to simulate effects on survival. The TKTD models are applied in
three steps: parameterization based on experimental data (calibration), comparing predictions with independent data (vali-
dation), and prediction of endpoints under environmental scenarios. Despite a clear understanding of the sensitivity of GUTS‐
RED predictions to the model parameters, the influence of the input data on the quality of GUTS‐RED calibration and validation
has not been systematically explored. We analyzed the performance of GUTS‐RED calibration and validation based on a
unique, comprehensive data set, covering different types of substances, exposure patterns, and aquatic animal species taxa
that are regularly used for risk assessment of plant protection products. We developed a software code to automatically
calibrate and validate GUTS‐RED against survival measurements from 59 toxicity tests and to calculate selected model eval-
uation metrics. To assess whether specific survival data sets were better suited for calibration or validation, we applied a design
in which all possible combinations of studies for the same species–substance combination are used for calibration and vali-
dation. We found that uncertainty of calibrated parameters was lower when the full range of effects (i.e., from high survival to
high mortality) was covered by input data. Increasing the number of toxicity studies used for calibration further decreased
parameter uncertainty. Including data from both acute and chronic studies as well as studies under pulsed and constant
exposure in model calibrations improved model predictions on different types of validation data. Using our results, we derived
a workflow, including recommendations for the sequence of modeling steps from the selection of input data to a final judgment
on the suitability of GUTS‐RED for the data set. Environ Toxicol Chem 2024;43:197–210. © 2023 Bayer AG and The Authors.
Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
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INTRODUCTION
There is an increasing need to better capture environmental

risks of chemical products in spatiotemporally heterogeneous
ecosystems, particularly in freshwater habitats, where their resi-
dues are ubiquitous (Schneeweiss et al., 2022). Therefore, inter-
national institutions and the scientific community are promoting
the use of mechanistic modeling approaches for environmental
risk assessment (ERA), such as toxicokinetic–toxicodynamic

(TKTD) effect models that show toxic effects at the individual
level (European Food Safety Authority [EFSA] et al., 2018; Jager
& Ashauer, 2018). Toxicokinetics (TK) encompass processes in-
fluencing the time course of toxicant concentration at the site of
toxic action, such as uptake and elimination. Toxicodynamics
(TD) describe how the toxicant affects the organism. The TKTD
modeling framework combines a mechanistic representation of
TKTD processes (the TKTD model) with advanced statistical tools
for parameter estimation and uncertainty analysis.

Environmental risk assessment in the European Union uses a
tiered approach whereby Tier I risk is assessed based on lab-
oratory experiments and conservative assumptions, while at
Tier II and higher, refinements can be applied. For such
higher tier refinements TKTD effect models can potentially be
used. They are promising tools to support an understanding
of species' sensitivities (Nickisch Born Gericke et al., 2022;
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Sardi et al., 2019; Singer et al., 2023), to extrapolate toxic
effects between different exposure regimes (Ashauer & Escher,
2010), and to predict mixture toxicity (Bart et al., 2022; Hansul
et al., 2021; Vlaeminck et al., 2021).

One of the most well‐established theoretical frameworks for
the TKTD modelling of lethal effects, especially for aquatic
organisms, is the General Unified Threshold model for Survival
(GUTS; Jager & Ashauer, 2018; Jager et al., 2011). It unifies TK
and TD processes in a few equations. Toxicokinetics include
the uptake and elimination of the substance, and TD covers
damage accrual and repair as well as subsequent organismal
effects. The representation of TK processes is often simplified
because internal substance concentrations are not measured in
standard toxicity tests, and the lack of information impedes the
separation of uptake and elimination. Instead, in the so‐called
reduced GUTS (GUTS‐RED), the accrual of “scaled damage” is
modeled, which is dominated by the fastest process that affects
scaled damage dynamics. There are two basic alternative as-
sumptions on death mechanisms within the GUTS framework.
One assumes that death is a stochastic process and that all
individuals have the same chance of dying at a given damage
level (stochastic death [SD]). The alternative assumption as-
sumes that there is intraspecific variability in the tolerance to a
toxicant and that individuals with low tolerance will die at low
exposure (individual tolerance [IT]).

The GUTS‐RED model for survival can be parametrized
(calibrated) based on exposure concentrations and the number
of surviving organisms over time. Such data are routinely avail-
able from regulatory ecotoxicological experiments, even though
sometimes at low temporal resolution. For the application of
such a model for risk assessment, a reliable calibration is
needed, obtained in a well‐documented and reproducible
manner, including documentation of parameter uncertainty.
Reliability of a model can be tested by comparing its predictions
with data sets that were not used for model calibration, a
process usually referred to as validation. Validation is important
to increase our confidence that the model with its calibrated
parameters adequately represents the actual processes in the

system and to test the model's transferability to new conditions
(Schuwirth et al., 2019). Several software implementations exist
for automated calibration and validation of GUTS‐RED (e.g.,
openGUTS, 2021; and “morse” [Baudrot & Charles, 2021]).

One of the main purposes of calibrating TKTD models is to
make predictions for effects under a number of different ex-
posure scenarios (Ashauer et al., 2016). In a case study, Nyman
et al. (2012) found that the model calibrated on data from a
constant experiment predicted the effects observed in a pulsed
experiment better than vice versa. Others suggested that
models calibrated on time‐variable data are best suited to
make predictions on time‐variable data (Jager, 2014; Larras
et al., 2022). These studies suggest that the type of calibration
data used itself, besides the quality of the calibration, influences
the predictive ability (validation performance) of GUTS‐RED.

In the present study we have calibrated and validated a large
number of GUTS‐RED models on a comprehensive database of
ecotoxicological experiments covering several substances, taxa,
and experimental designs, conducted by different laboratories.
This unique real‐world data set allows for a more systematic in-
vestigation of the effects of experimental design factors pro-
posed to be influential on GUTS‐RED model quality in previous
studies, such as temporal resolution of measurements, range of
observed toxic effects across treatments, number of concen-
trations, and duration of the whole study as well as pulses tested
(Ashauer et al., 2016; EFSA et al., 2018; Focks et al., 2018). In
addition, we addressed novel questions related to how different
aspects of model performance (calibration fit, parameter un-
certainty, and validation performance) relate to input data and to
each other. In total, we investigated five questions, also listed in
Table 1: Q1: Which experimental design factors of the calibration
data impact the precision of parameter estimates the most? Q2:
Do experiments with short pulses provide sufficient information
for parameter estimation? Q3: What is the influence of the
number of experiments included in the calibration data on the
uncertainty of parameter estimates? Q4: What is the relative in-
fluence of calibration quality and the similarity of the calibration
and validation data in duration and exposure on validation per-

TABLE 1: Questions investigated in the study, including our initial expectations and related figures

No. Question Expectation Figure

Q1 Which experimental design factors of the calibration data
impact the precision of parameter estimates the most?

None (no previous comparisons available that included all factors
tested here).

1

Q2 Do experiments with short pulses provide sufficient information
for parameter estimation?

We expect that when toxicokinetics are slow, pulse duration must
be sufficiently long to generate informative effect data.

—

Q3 What is the influence of the number of experiments included in
the calibration data on parameter uncertainty?

Increasing the number of experiments may increase the precision
of parameter estimation due to high‐information content or
may increase uncertainty of parameter estimation if the
information content of the studies is not consistent.

2

Q4 What is the relative influence of calibration quality and the
similarity of the calibration and validation data in duration
and exposure on validation performance, measured by
different GoF metrics?

A successful validation (high GoF) can be expected 1) if
calibration quality is good, regardless of the type of calibration
and validation data; or 2) if validation data is of a similar type as
was used for calibration, regardless of calibration quality; or 3)
if both of the previous conditions are satisfied.

3, 4

Q5 What is the effect of combining studies from different labs/
years on GoF for 1) calibration, or 2) validation?

We expect 1) lower calibration GoF when the input data come
from different labs/years; or 2) lower validation GoF when the
validation and the calibration data stem from different labs/
years, due to a higher chance of inconsistencies.

5

GoF= goodness‐of‐fit.
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formance, measured by different goodness‐of‐fit (GoF) metrics?
Q5: What is the effect of combining studies from different lab-
oratories/years on GoF for 1) calibration, and 2) validation?

METHODS
We collected a large data set, which contained ecotox-

icological survival experiments. We characterized the
experiments according to their experimental design, con-
sidering factors such as experiment duration or number of
tested concentration levels. The total data set contained
several subdata sets, each of which was a collection of at least
three ecotoxicological experiments differing in exposure
patterns for a species–substance combination, as detailed in
the next paragraph.

For each subdata set with a species–substance pair, we
built several GUTS‐RED (both GUTS‐RED‐SD and GUTS‐RED‐
IT). To build a GUTS‐RED for a subdata set, we calibrated the
model on one part of its survival experiments (calibration
data) and validated it against another independent part
(validation data). This calibration/validation procedure was
repeated for all possible combinations of experiments in the
subdata set (Table 2), resulting in many GUTS‐RED simu-
lations. The GUTS‐RED simulations were analyzed with re-
spect to their quality. Quality metrics described the precision
of estimated GUTS‐RED parameters in terms of a parameter
uncertainty index (PUI) as well as the GoF to calibration or
validation data.

To learn how the quality of GUTS‐RED is impacted by the
design of ecotoxicological experiments, we related GUTS‐RED
quality metrics to experimental design factors. Relations were
assessed visually and if possible underpinned by statistical
tests.

Data
Experimental data were selected from aquatic study reports

owned by Bayer and based on the criteria that for a given
substance–species combination at least three different studies
must be available, with at least one of them being a pulse ex-
posure study. For the data set we aimed at a comprehensive
representation of study types. The final data set used for
the present study included 14 subdata sets, each comprising
three to seven experiments for a specific substance–species pair,
in total 59 experiments, conducted between 1991 and 2020. The
experimental data set covered nine substances (two herbicides,
four insecticides, and three fungicides) and nine taxonomic
species (four crustaceans, three insects, and two fish).

In terms of experimental design, a roughly equal number of
experiments were acute (conducted over a few days) or chronic
(spanning several weeks), under constant or pulsed exposure,
and conducted under static, semistatic, or flow‐through con-
ditions. The number of concentration levels tested besides con-
trol ranged from 1 to 10, and the number of individuals per
concentration level ranged from 10 to 80. For the pulsed studies,
one to three pulses were applied. Pulse duration was variable,
ranging from short (4–8 h), to intermediate (20–24 h), to long
pulses (3–7 days). No‐exposure periods between pulses varied
from 3 h to 13 days. Temporal resolution of the survival data was
variable, with 2–88 measurement time points available for each
concentration level assessed. The experiments were performed
by 10 different laboratories. For more details on experimental
characteristics, see Appendix 1.1 and data in the Supporting
Information.

Effects observed under different exposure levels were sub-
stantially different across subdata sets, indicating differences
between substance–species combinations in their TK and
TD properties (Supporting Information, Figure A.I.4 and
Appendix 1.2).

GUTS calibrations and validations
GUTS describe TK and lethal effects due to damage caused

by a substance (Jager et al., 2011). We used the GUTS‐RED
variant, which links the exposure concentration directly to the
damage in an individual, without explicitly modeling internal
concentrations. Damage leads to lethal effects according to the
assumption of IT or, alternatively, SD.

The GUTS models were calibrated using data from every
single experiment included in a subdata set and in all possible
combinations with other experiments in the subdata set (Table 2).
This was done for both GUTS variants (GUTS‐RED‐IT and GUTS‐
RED‐SD), resulting in 772 calibrated models. Validations of a
GUTS‐RED were conducted with studies in the subdata set that
were not used for its calibration. Validations were conducted with
each of these remaining studies individually or in all possible
combinations, resulting in 6852 validations.

For GUTS modeling, we used an existing software im-
plementation, the R package morse Ver. 3.3.1 (Baudrot &
Charles, 2021). This package uses a Bayesian approach for
parameter fitting (Billoir et al., 2008). For the IT variant, the

TABLE 2: An example of the calibration–validation setup for a subdata
set containing three experiments, coded as A, B, and C

Calibration Validation

A B
A C
A BC
B A
B C
B AC
C A
C B
C AB
AB C
AC B
BC A
ABC —

Two‐ or three‐letter combinations mean that data were combined from several
experiments to calibrate or validate a model. There are two GUTS models cor-
responding to each row of the table, an IT and an SD variant. When all data sets
were used for calibration (here: ABC), the models were not validated, but the
parameter estimates and their uncertainty were analyzed together with those of
the other calibrated models.
GoF= goodness‐of‐fit; GUTS=General Unified Threshold model of Survival; IT=
individual tolerance; SD= stochastic death.
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parameters dominant rate constant (kd‐IT), the median of the
distribution of threshold values (α), and the shape parameter (β)
were calibrated; for the SD variant, the dominant rate constant
(kd‐SD), the threshold (z), and the killing rate constant (kk) were
calibrated. The dominant rate constant governs the speed of
toxicokinetic/‐dynamic processes, the parameters α and z
govern the threshold concentration at which survival is af-
fected, and β and kk govern the strength of the effects. Back-
ground mortality rate (hb) was fitted together with other
parameters for calibrations and refitted from the controls for
validations. The morse package automatically determines
priors for the parameter estimate, based on the experimental
design of toxicity tests under constant exposure. For other than
constant exposure profiles (as contained in our data set), priors
might not be optimally chosen. Because this could have in-
troduced bias, we have refrained from a thorough analysis of
prior influence on model predictions. In preliminary tests, we
did not find a clear influence of priors on the prediction per-
formance of the models. Details of the model are given in the
Supporting Information, Appendix 2.

Simulations were conducted using the function “pre-
dict_Nsurv_ode” of the morse package, which uses the pre-
dicted survival probability in a stochastic binomial process to
simulate the number of surviving individuals. Simulations were
repeated for each of 1000 randomly selected parameter sets
from the calibration posterior distribution to generate 95%
credible intervals.

The exposure profiles in the input data were derived from
measured concentrations in all cases, except for a study from
1991 in which concentration measurements were not available
for all treatments, so nominal concentrations were used. For
many arthropod species, immobility is commonly used as a
proxy for mortality, but in some experiments immobile in-
dividuals were found to be mobile at a later stage. Such re-
covery was disregarded, because in the GUTS approach the
number of dead individuals can only increase or stay constant
over time. In line with standard GUTS‐RED modeling practice,
we used the data as provided and did not apply any rescaling
of the data or parameters to account for potential differences in
experimental conditions among toxicity tests.

GoF metrics
We quantitatively captured a wide range of fit quality as-

pects with a comprehensive set of GoF metrics (Supporting
Information, Table AI.2 and Appendix 5). These were: mean
squared error (MSE), normalized root‐mean‐square‐error
(NRMSE), survival probability prediction error (minimum and
maximum across treatments, reflecting under‐ and over-
prediction error, respectively [SPPEmin and SPPEmax]), posterior
predictive check (PPC), and four pseudo‐R2 metrics. We in-
tegrated information across GoF metrics into one measure of fit
quality, the Average GoF. This metric ranges between 0 and 1,
and larger values express a better model fit. To calculate the
Average GoF, we used all metrics, except those that were
redundant to others (Supporting Information, Appendix 5).

Statistical analysis of parameter uncertainty
We introduce PUI, a metric that describes the average un-

certainty of parameter estimation for a given calibrated model
across all three TKTD parameters (GUTS‐RED‐IT: kd‐IT, α, β;
GUTS‐RED‐SD: kd‐SD, z, kk).

∑=
=

Q

Q
PUI

1
3

log
97.5

2.5j

j

j1

3

10

The log10 of the ratio of the 97.5th to the 2.5th quantile (Q) of
the marginal posterior distribution of a given parameter
j expresses how many orders of magnitude are spanned by the
95% of the posterior distribution of that parameter. The larger
the PUI is, the more uncertain are the parameter estimates. The
PUI implicitly accounts for correlations between calibrated pa-
rameters. If parameters are correlated, their joint distribution is
determined, but their marginal (i.e., separate) estimates are
uncertain and increase the PUI. The background mortality hb is
not considered in PUI calculation, because its uncertainty is
significantly lower than that of the other parameters. Including
hb in the calculation of PUI did not change the major results
presented but decreased PUI values overall (results not shown).

The relation between PUI and experimental characteristics
(Q1) was analyzed visually and with a generalized linear model
(GLM) approach (gamma distributed error and log‐link to ac-
count for the positive‐valued response). As explanatory factors,
we included independent experimental characteristics that di-
rectly relate to the information content of the effect data: study
duration, number of survival measurements, number of treat-
ments (i.e., levels of tested concentrations), fraction of treat-
ments with intermediate mortality, and a factor specifying
whether the full effect range was covered (i.e., there was at
least one treatment with ≤25% and one with >75% mortality,
including the control). Number of pulses were not included
in this analysis due to lack of variability, because most of
the treatments had two pulses (Supporting Information,
Figure A.I.3). For conducting the GLM analysis, continuous
explanatory variables (e.g., study duration) were scaled to re-
duce exceeded discrepancies among their ranges and lever-
ages. We applied R‐package glmulti (Calcagno, 2020) to
conduct a model selection among all possible GLMs with first‐
and second‐order (pairwise parameter interactions) effects,
based on the Akaike information criterion (AIC). We excluded
models from the automatic selection if the fitting algorithm
failed. The importance of experimental characteristics and their
interactions was analyzed according to their contributions to
the set of the 100 best fitting models (weighted by AIC). In
addition, we analyzed the influence of the ratio of exposure
pulse duration and study duration (as a proxy for the ratio of
exposure to nonexposure time) for studies conducted under
pulsed exposure using linear regression (using the function
stat_poly_eq from the R‐package ggpmisc; Aphalo, 2022).

To address the impact of calibration quality and input data
on validation performance (Q4), we classified calibrations into
“well‐calibrated” models (calibration average GoF of ≥0.6
and PUI of ≤2) and “poorly calibrated” models (calibration
average GoF <0.6 or PUI >2). Validations were considered

200 Environmental Toxicology and Chemistry, 2024;43:197–210—Bauer et al.
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“good” if the average GoF exceeded 0.6. These threshold
values were chosen because they provided good discrim-
ination to identify the influence of types of input data on
calibration and validation. In a sensitivity analysis, slight var-
iation of the threshold values did not affect the qualitative
patterns of the analysis, indicating that the thresholds provide
robust results.

The fraction of successful validations was first calculated
for each calibration, then averaged for each combination of
calibration and validation data type (acute/chronic/acute +
chronic and pulsed/constant/pulsed + constant) for each
subdata set separately, and then averaged across all data
sets. This way each subdata set was weighted equally,
regardless of how many experiments it contained. However,
the averaged fractions are uncertain, if sample sizes are
small, which was the case for some calibration/validation
input data combinations for which only a few examples were
available.

To compare the ability of single GoF metrics to select
calibrated models with high predictive abilities, we repeated
the analysis using only single GoF metrics to distinguish be-
tween “well‐calibrated” and “poorly calibrated” models,
calculated the average success of models falling in the two
categories by data set, and compared the fraction of suc-
cessful (GoF >0.6) validations between the two categories. To
have comparable thresholds, we selected the threshold for
“well‐calibrated” models such that a fixed percentage of
calibrations were accepted for each criterion, the same per-
centage as when the criteria calibration average GoF of ≥0.6
and PUI ≤2 were used.

Finally, we investigated the impact of using data from dif-
ferent laboratories or different years on calibration and vali-
dation quality (Q5). Because all experiments conducted by
different laboratories were also conducted in different years,
we cannot separate the effect of these two factors. For the test
on calibration quality, we selected models that were calibrated
on at least two experiments of the same type, conducted either
in the same or different laboratories and years (only available in
the subdata sets imidacloprid ×Cloeon and trifloxystrobin ×
Daphnia). We compared average calibration GoF and PUI be-
tween calibrations based on data from different or the same
laboratories. For testing the effect on validation quality, we
selected validations in which the calibration data and validation
data came from different or the same laboratories and years
but were otherwise the same type (available in the subdata sets
imidacloprid ×Cloeon, trifloxystrobin ×Daphnia, and fluoxas-
trobin ×Americamysis), and we compared average validation
GoFs between the two cases. Comparisons were done using a
two‐sided Wilcoxon test (stat_compare_means function from
the ggpubr package; Kassambara, 2022).

On all figures including boxplots, dots are considered as
outliers, lines around boxplots range from minimum to max-
imum values, boxplot edges are 25th and 75th percentiles, and
the middle line is the median. Analysis and visualization of re-
sults was done using the package tidyverse (Wickham
et al., 2019) from the software R (R Core Team, 2022), Ver. 4.2.0
in the IDE RStudio (RStudio Team, 2022).

RESULTS
First we present results related to parameter uncertainty for

calibrations based on one experiment only (Q1 and Q2). Then
we discuss how parameter uncertainty and calibration GoF
change when data sets are added to calibration input data
(Q3). Furthermore, we analyze the relationship between cali-
brations and validations (Q4). Finally, we investigate the effect
of using experimental data from different laboratories on cali-
bration and validation quality (Q5).

Most model calibrations could be considered successful,
because 96% of calibrated models reached a GoF of ≥0.6 and
91% reached a PUI of ≤2. All models, including those with low
GoF and high parameter uncertainty, were used in the fol-
lowing analysis because our aim was to understand which
factors led to well‐calibrated and which to poorly calibrated
models.

Q1: Effects of experimental design on parameter
uncertainty

The most important and significant experimental charac-
teristic relating to parameter uncertainty in our data set was the
range of effects observed across treatments (Figure 1A and
Supporting Information, Figure AI.5 and Table AI.1). The effect
strength of the factor “full effect range” in the best fitting GLM
was 0.81 (Supporting Information, Table AI.1). This means that
calibrating models on experiments with a full effect range
compared with an incomplete effect range reduced PUI by
81%, that is, 0.81 orders of magnitude narrower posteriors.

The number of treatments was the second most important
factor, although it mostly contributed via its interactions with
number of measurements per treatment, study duration, and
effect range (Supporting Information, Figure AI.5). For experi-
ments with an incomplete effect range, a decrease in PUI could
be observed when the number of treatments was increased
(Figure 1B). Models calibrated on experiments with only two
treatments and an intermediate number of measurements, which
only showed an incomplete effect range, had a high PUI
(Figure 1C). The PUI became lower when increasing the number
of measurements above 20 (possible in chronic experiments),
without increasing the number of treatments, and when in-
creasing the number of treatments above two without increasing
the number of measurements in the calibration input data.
Above these thresholds PUI had no clear relationship with either
number of treatments or measurements. We found a weak re-
lationship between PUI and relative pulse duration when pulse
experiments only were considered in a linear model, but only
when effect range was incomplete (Figure 1D). The uncertainty
ranges around the relationships shown in Figure 1B and D are
wide due to the relatively small number of cases in our data set
with an incomplete effect range. The explanatory variable
“number of treatments with intermediate mortality” was not
relevant in the model (Supporting Information, Figure AI.6).

When the GLM analysis was repeated considering only IT or
SD models, there were no major differences between the re-
sults; only the importance order of the secondarily important

Input mortality data for TKTD models—Environmental Toxicology and Chemistry, 2024;43:197–210 201
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characteristics (number of treatments, measurements, and
study duration) changed, whereas effect range remained the
most important experimental characteristic to determine PUI.
Therefore the two model variants were pooled in the analysis.

Q2: The impact of pulse duration on parameter
uncertainty under slow kinetics

In agreement with our previous expectation, the data sug-
gested that pulses must be long enough for a precise param-
eter estimation when TKTD processes are slow. We assumed
slow TKTD when the median kd was too low for damage to
reach 5% of steady state by the end of experiment. Calibrated
models with such low kd estimates based on input data with a
pulse duration of ≤24 h had a high parameter uncertainty (PUI
>3 for SD and PUI ≥1.5 for IT), as opposed to PUI <1 for pulse
durations between 72 and 168 h.

Q3: Effects of combining studies for calibration
on parameter estimates and their uncertainty

Average GoF generally decreased with increasing number
of experiments included in the calibration data (Figure 2A). This
means that as the number of input data sets increases, it be-
comes harder to find a parameter set that results in a perfect fit.

Nevertheless, GoF for higher numbers of experiments was still
in the range of GoF for lower numbers of experiments. Fur-
thermore, the median GoF for models based on seven ex-
periments, the maximum in our data set, was still approximately
0.8, which was in the higher range of average GoF values
overall (Supporting Information, Appendix 5). The probability
for an extremely low GoF decreased when more studies were
included in the input data.

Parameter uncertainty also decreased with increasing number
of experiments included in the calibration data (Figure 2B and
Supporting Information, Figure A.I.5). Although a very high pa-
rameter uncertainty was possible when the calibration was based
on a single or just a few studies, this became more unlikely when
more studies were combined. There were also a few excep-
tions, mostly seen when a study with already uncertain parame-
ters was combined with other studies (Supporting Information,
Appendix 3.1) or when experiments suggested significantly dif-
ferent parameter values (Supporting Information, Appendix 4).

Q4: Effect of calibration and validation data
on validation GoF

The criteria average GoF ≥0.6 and PUI ≤2 to classify a
model as “well calibrated” gave 676 (88%) “well‐calibrated”

FIGURE 1: Parameter uncertainty index (PUI) as a function of (A) effect range in the experimental data: full effect range (at least one treatment with
≤25% and one with >75% mortality, including the control), and incomplete effect range: the lack of a treatment with high (28 cases) or low (4 cases)
mortality; (B) number of concentration levels tested, and effect range (full: brown circles; incomplete: blue triangles); (C) number of concentration
levels tested (x‐axis) and temporal resolution of the data, that is, the number of survival measurements/treatment (y‐axis). Area and color of the
shapes (full effect range: circles; incomplete: triangles) are relative to PUI; (D) only for pulsed studies: the duration of individual pulses divided by the
total study duration (shapes and colors as in [B]). Each dot represents one calibrated model, based on data from one experiment. Lines are linear
regression lines fitted by the geom_smooth function in the ggplot2 package (Wickham, 2016); the gray areas show standard error. Two models
(stochastic death [SD] and individual tolerance [IT] variants) based on the same experiment with full effect range and 75 measurements, with
corresponding PUI values between 0 and 1, were removed from (C) for a better visibility of the lower range of values.
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and 96 (12%) “poorly calibrated” models. Thus fewer models
were available to test predictive abilities of “poorly calibrated”
models. “Well‐calibrated” models could be generated with all
combinations of input data (acute or chronic; constant or pulse
exposure), in contrast to “poorly calibrated” models. When
input data consisted of the combination of acute constant and
pulsed studies, no resulting models were classified as “poorly
calibrated” (Figure 3).

Validation success depends on both the quality of the cali-
brated model and the match of calibration and validation data
type, that is, exposure and timescale (Figure 3). “Well‐
calibrated” models tended to make successful predictions
(average validation GoF ≥0.6) on validation data overall, but
especially when the same type of data was used for validation
and for calibration (Figure 3A). Looking at single‐study cali-
brations and validations (Figure 3A lower left corner), models
calibrated on acute constant or chronic constant experiments
had the same fraction of success in predicting acute pulse or
chronic pulse data, respectively, as the corresponding pulsed
studies, but not vice versa. Calibrations with high parameter
uncertainty or poor fit to calibration data tended to lead to
unsuccessful validations (Figure 3B).

Under Q4 we further expected that combining different
types of data for calibration would increase the chance for a
good validation, because the overlap between calibration and
validation data types would be increasing. Indeed, the pre-
dictive ability of models based on only one type of data (left
side of Figure 3A) was generally lower than those of combi-
nations (right side of Figure 3A). However, the predictive ability

of models based on chronic constant and pulsed data was not
higher than those based on chronic constant data alone (cf.
Ch_c and Ch_c+p in Figure 3A).

When only single GoF metrics were used to distinguish
between “well‐calibrated” and “poorly calibrated” models,
the thresholds for calibrated model acceptance that resulted
in 88% models classified as “well calibrated” were: NRMSE:
0.78; Nagelkerke‐pseudo‐R2: 0.99; PPC: 0.65; SPPEmax: 0.62;
|SPPEmin|: 0.4. In all cases, “well‐calibrated” models had a
higher validation success. However, the extent of difference in
the predictive ability between “well‐calibrated” and “badly
calibrated” models varied among individual metrics used to
classify the models, being the highest for NRMSE and the
lowest for SPPEmax (Figure 4).

Q5: Effects of using data from different
laboratories and years on calibration and
validation quality

Median calibration GoF was lower and median PUI was
higher when data from different laboratories were combined
for calibration compared with those based on several experi-
ments from the same laboratory. However, the difference was
not significant, at the p< 0.05 level (Figure 5A and B). Never-
theless, the relatively small sample size (n= 30) precludes
drawing robust conclusions. There was also no significant dif-
ference between validation GoFs when calibration and vali-
dation data were produced by the same or different

FIGURE 2: (A) Average goodness‐of‐fit (GoF) and (B) parameter uncertainty index (PUI) as a function of increasing the number of experiments used
for calibration of a single model. Individual tolerance (IT) and stochastic death (SD) models are pooled in the figures.
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FIGURE 4: Distribution of the fraction of successful validations (fraction of validations with validation goodness‐of‐fit [GoF] of ≥0.6 by each
calibrated model, averaged across models for each data set) by calibrated models classified as “well calibrated” (orange) and “poorly calibrated”
(blue) depending on the metric used to classify models. NRMSE= normalized root‐mean‐square‐error; PPC= posterior predictive check; SPPE=
survival probability prediction error.

FIGURE 3: Fraction of successful validations by (A) “well calibrated” models (calibration average goodness‐of‐fit [GoF] of ≥0.6 and parameter
uncertainty index [PUI] of ≤2) and (B) “poorly calibrated” models (calibration average GoF <0.6 or PUI >2). The horizontal and vertical thick black
lines visually separate cases when the input data for calibration (x‐axis) or validation (y‐axis) comprised only one type of data (A: acute, Ch: chronic, c:
constant exposure, p: pulsed exposure) or combinations (indicated by the “+” symbol). For example, A+Ch_c+ p means that both acute and
chronic, and constant and pulsed data were used in any combination.
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laboratories, but validation GoF seemed slightly lower in the
latter case (Figure 5C).

DISCUSSION
We automatically calibrated and validated a large number of

GUTS‐RED on a large number of experiments and developed
indices to capture parameter uncertainty and GoF. This al-
lowed us to answer our initial five questions (Table 1) about the
influence of calibration and validation data characteristics on
model performance, as follows:

Q1: The most important determinant of the precision of pa-
rameter estimates was the range of effects in the input
data used for calibration.

Q2: Longer pulses were associated with lower parameter un-
certainty when TK was slow.

Q3: Average GoF somewhat decreased with increasing
number of experiments included in the calibration input
data, but generally remained high, and calibrations with
extremely bad GoF became less likely; parameter un-
certainty also decreased when the number of experiments
was increased.

Q4: Well‐calibrated models tended to make more successful
predictions, especially if validation data came from a
similar experimental setup as the calibration data, or at
least a part of the calibration data; nevertheless, pulsed
data were predicted with the same chance of success by
models calibrated on constant or pulsed experiments.

Q5: No major effect of combining data from different labo-
ratories for calibration was detectable or when calibration
and validation data were generated in different labo-
ratories compared with using data from the same labo-
ratories.

What kind of data are needed for model
calibration?

In standard experiments at Tier 1 risk assessment, a static
exposure regime is used. However, at Tier 2 peak exposure can
be considered, which involves a time‐variable exposure
whereby one or more substance pulses of constant concen-
trations are applied alternating with no‐exposure periods. In
semistatic designs, concentrations are allowed to decline or
might be experimentally diluted after application.

An ideal experimental design for modeling depends on
model purpose. It is common practice in ERA to apply stat-
istical models to test for differences between control and
treatment at the end of toxicity tests. This purpose is supported
by the design of standard toxicity tests. However, this approach
ignores temporal variation in exposure, even though time‐
variable exposure is closer to realistic exposure (Brock, 2009).
Toxicokinetic–toxicodynamic models allow for the consid-
eration of time‐variable exposure in model predictions for ERA.
Nevertheless, it has been questioned whether experiments that
were designed for static exposure (like standard toxicity tests)
provide suitable data to construct models that consider tem-
porally variable exposure.

FIGURE 5: (A) Average calibration goodness‐of‐fit (GoF) and (B) parameter uncertainty index (PUI) for calibrated models based on input data from
same or different laboratories but otherwise of the same type (i.e., combination of acute/chronic and pulsed/constant). (C) Average validation GoF
when calibration and validation data were generated in the same or different laboratories but were otherwise the same type.
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The purpose of calibration input data is to estimate pa-
rameter values that are transferable to exposure situations
beyond the laboratory studies used for calibration. The more
informative the data is, the less uncertain are the resulting
parameter estimates, decreasing the uncertainty of model
predictions as well. The EFSA recommends that for calibration
of GUTS‐RED using input data from aquatic toxicity studies, the
number of treatment levels and experimental duration are set so
that ideally zero to full effects are observed across treatments
(EFSA et al., 2018). In accordance with this recommendation, our
results stress the importance of a large effect range, which may
not be realized in experiments conducted to define a no‐effect
concentration based on hypothesis‐testing statistical approaches.
Nevertheless, we found that parameter uncertainty was already
reduced when at least one treatment showed <25% and another
>75% mortality. Thus, effects from 0% to 100% are not neces-
sary. In fact, the apparent decrease in parameter uncertainty
while increasing the number of treatments may be a con-
sequence of widening the effect range, even when the range
does not reach the 25% and 75% thresholds.

Furthermore, our results suggest that if a full effect range
is realized, it is not crucial for parameter estimation that
other criteria such as number of treatments fully satisfy the
recommendations. From a practical perspective, it is ad-
vantageous that it does not seem to be necessary to con-
duct experiments at many treatment levels to have a
sufficient number of treatments resulting in intermediate
mortality, as is necessary for dose–response modeling
(Jager, 2014). The necessary condition for a precise esti-
mation of parameters is that the data contain enough in-
formation for the model to infer the internal accumulation of
damage over time. This condition can already be satisfied
with few treatment levels when there are some measurement
points before a large mortality is reached in at least one of
the treatments, and when the concentrations applied across
treatments are not too widespread. Thus, it is the interplay
of various factors, most importantly effect size, as well as the
resolution of concentrations and temporal measurements,
that will decide the suitability of the experimental data for
GUTS calibration.

The EFSA et al. (2018) suggest at least five observation points
over time, based on scientific studies emphasizing the role of
temporal resolution in the data (Ashauer et al., 2016;
Jager, 2014). We did not find this condition to be either neces-
sary or sufficient for precise parameter estimation. No clear re-
lationship appeared between number of measurements over
time and precision of parameter estimation. It can be argued that
such a relationship would be expected, because a higher time
resolution provides a more exact dose (internal concentration)–
response within a treatment. On the other hand, as mentioned
previously, timing of the effects can already be captured with a
few measurements, and further measurements do not add
precision.

When the dominant rate constant (kd) is very small com-
pared with the exposure time, a compound shows slow kinetics
in the test species (Jager & Ashauer, 2018; Kooijman & Be-
daux, 1996). This case is often difficult to handle with the

GUTS‐RED approach, because the data hardly contain enough
information to constrain parameter kd. Our results suggest that
if data from pulsed experiments are used for model calibration,
it is advisable to use long pulses to inform kd.

How to select calibration and validation studies
for a meaningful model validation

Good predictive performance on validation data is an in-
dicator of transferability of the model, which is crucial if the
model is to be used to extrapolate effects to untested conditions
(Schuwirth et al., 2019). In our study, calibrated GUTS‐RED
models with high parameter uncertainty or low GoF generally
had poor predictive ability. However, predictive ability of well‐
calibrated models still varied depending on the validation data.

One of the perceived advantages of TKTD models is the
ability to extrapolate from effects observed under constant
experimental conditions, as applied in standard toxicity tests,
to potential effects under more realistic, fluctuating conditions
(Ashauer & Escher, 2010). Indeed, several studies have dem-
onstrated that models calibrated on data from experiments
under constant exposure made good predictions on time‐
variable data (Focks et al., 2018; Nyman et al., 2012). However,
some authors have suggested that data collected under time‐
variable exposure should be used for both calibration and
validation (Jager, 2014; Larras et al., 2022). In our study,
models based on constant experiments were just as successful
in predicting pulsed experiments as those based on pulsed
studies. This finding supports the potential usefulness of
standard experiments for model calibration. Nevertheless,
models calibrated on a combination of both acute and chronic
data as well as constant and pulsed data had the highest rate of
success in predicting effect data from all types of experimental
setups. This indicates that parameter estimates of these models
best approached the real underlying values. This is in line with
the results of Albert et al. (2012) for the Threshold Damage
Model, a precursor of GUTS‐RED‐SD; these authors suggested
that because different experimental designs are useful to gain
information about different parameters, it is best to use a
combination of different experiments to inform all parameters.
An additional advantage of using a combination of data for
calibration is that, besides being able to predict a wider range
of situations, uncertainty decreases with an increasing number
of data sets used for calibration.

Despite the advantages in combining multiple experiments
for calibration, typically the number of available studies is lim-
ited, and conducting new studies for the purpose of model
calibration may have ethical and financial obstacles. Arguably,
in data‐limited cases it is important to get the best possible
parameter estimates, which is achievable by using most ex-
periments for calibration and fewer for validation. In the most
extreme case, one could argue that validation is not necessary,
and it is better to use all available information for calibration.
Our results do not support this suggestion, because even well‐
calibrated models failed to successfully predict effects in in-
dependent data in some cases. It can be very informative to
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investigate such cases to be able to gain insights into model
transferability and its limits. It needs to be pointed out that
demonstrating the transferability of endpoints derived from
statistical hypothesis‐testing approaches would be similarly
desirable; however, it is not currently a requirement in ERA, as
opposed to TKTD models.

In the context of the European ERA of plant protection
products, it is especially important to stress a careful consid-
eration of the model purpose (risk prediction for time‐variable
environmental exposure) when selecting the data for both
calibration and validation. The EFSA et al. (2018) have sug-
gested that validation data need to include several time‐
variable exposure regimes, whereas they did not specify
exposure regimes for calibration data. However, our results
show that using all experiments with one type of exposure
(constant or pulse) for validation and all the others for calibra-
tion may result in a calibration data set that does not provide
enough information for the calibration routine to find the pa-
rameter estimates that correctly describe the dynamics of the
system. As just discussed, data from standard experiments may
be sufficient for model calibration especially if few data are
available that were collected under other exposure regimes,
which then need to be used for validation. However, when
possible, calibration data should include experiments that are
representative of the purpose of the model, to increase the
chances that the calibrated model is truly suitable for use.

Different GoF metrics are expected to capture different as-
pects of fit (EFSA et al., 2018). Nevertheless, metrics were similar
in their ability to identify calibrated models that were more suc-
cessful in validations. Only the metric measuring underestimation

error, SPPEmax, performed less well. Individual metrics reflect
different aspects of the model fit, which depends on accuracy
and parameter uncertainty, which in turn are impacted by dif-
ferent aspects of the input data, as discussed previously.
Therefore, it is possible that individual metrics have specific re-
lationships to the input data. Because metrics are used in ERA to
assess model suitability, it would be important to investigate
whether certain experimental designs favor or handicap certain
metrics. This would be possible using a data set like ours com-
bined with a detailed analysis of the metrics’ mathematical
properties, which is beyond the scope of our study.

Guidance for GUTS‐RED calibration and
validation

Based on the insights discussed, we have developed a de-
cision tree to aid transparent decision‐making during the
GUTS‐RED modeling cycle. Our results provide guidance at
several steps of a typical GUTS‐RED modeling cycle for ERA
(Figure 6). As a first step, the above considerations can help in
choosing suitable calibration and validation data for the model
(Figure 6, B1), in terms of number (Q3) and type (duration and
exposure pattern; Q2 and Q4) of studies included. When cali-
bration is high quality based on selected criteria reflecting GoF
and parameter uncertainty, and validation results in a high GoF,
the model can be considered acceptable for risk assessment
(Figure 6, B2 and B3).

A calibration that results in an insufficient fit or high un-
certainty in the parameter estimates could be the result of
technical issues as well as problems with the data themselves

FIGURE 6: Schematic representation of the decision process for toxicokinetic–toxicodynamic (TKTD) modeling. Arrows indicate the sequence of
decision steps on modeling. Rounded boxes describe questions, and rectangular boxes describe insights about the model. See explanation in the
text for a more detailed explanation of the steps. GUTS‐RED= Reduced General Unified Threshold model of Survival.
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(Figure 6, B4 and B5). When technical issues can be excluded, an
in‐depth evaluation of the calibration data, the model fit, and the
parameter posteriors can reveal whether the whole data set is not
informative enough (Figure 6, B5). This is likely when effect range
is incomplete (Q1), pulses are too short compared with kinetics
(Q2), parameter estimates are uncertain, and predictions have
wide uncertainty bands. In this case, calibration data need to be
extended by an additional data set. If necessary and possible,
new experiments can be conducted to inform the parameters
that were previously uncertain. Please note that although precise
parameter estimates are generally desirable, biological proc-
esses have an inherent variability, and too precise parameter
estimates may give predictions with a false precision.

When the data set appears informative, but the calibration
routine is still not able to find a good fit and precise parameter
estimates, it is likely that individual experiments are inconsistent
(Figure 6, B6). This could be the result of variability between
laboratories (Q5). For example, for some taxa in aquatic risk as-
sessment, immobility is considered as mortality. Immobility signs
may be interpreted differently between laboratories, leading to
relatively more or less apparent mortality at similar exposures
compared with one another. Such issues can only be identified
by going back to the original experimental protocols after in-
specting the model fits. In these cases, the inconsistent experi-
ments can be removed from the calibration data, or, if possible,
the raw data can be reprocessed in a manner consistent with
other studies. However, if variability in data processing and other
human errors can be excluded and the standard GUTS‐RED still
fails to calibrate well on the input data, then this approach is not
suitable to model the data set. A simple reason can be variability
in conditions, such as temperature (Huang et al., 2023) or size of
individuals used, which would need adjustments to the model
structure (Gergs et al., 2015; Mangold‐Döring et al., 2022) or
additional assumptions on the mathematical relationship among
temperature, size, and TKTD parameters to rescale the data
(Gergs et al., 2019; Rakel et al., 2022). Other reasons are more
complex, but modeling can help to pinpoint them. For example,
the substance may have different modes of action for the species
when exposure is short versus long (see Gergs et al., 2021). This
would be indicated if the input data contain experiments with
different exposure durations, and if the parameter estimation
gives very different results when experiments are used as cali-
bration input in isolation and fails to converge or gives a bad fit
to some of the studies when they are combined (see the Sup-
porting Information, Appendix 4, for an example). Some cases of
TKTD are hard to capture using GUTS‐RED, such as a fast uptake
coupled with slow damage repair dynamics. In these cases, more
complex TKTD models are needed for modeling the environ-
mental risk of the substance. Similar considerations apply to
identifying potential reasons for inconsistency between calibra-
tion and validation data (Figure 6, B7).

CONCLUSIONS
We tested GUTS‐RED calibrations and validations based on

realistic variability of study designs, substances, species,

laboratories, and experimental data (dose–effect relationships).
To our knowledge this is the first time that such extensive re-
search has been performed on this topic. The systematic
analysis of GUTS‐RED performance allows data‐driven con-
clusions on the impact of calibration and validation data on
model performance, complementing previous insights based
on expert knowledge. However, because design factors usually
covaried, it was difficult to completely disentangle their effects,
for example, pulse duration and experimental duration. This
precluded strong conclusions about the effect of one specific
aspect of experimental design on parameter estimation. Cre-
ating calibrations and validations based on artificial data would
be a promising approach to investigate the effects of one
variable systematically, while keeping variation in other factors
minimal (see Albert et al., 2012; Ashauer et al., 2016).

During the last decade, the use of models in pesticide risk
assessment has been increasing (Forbes et al., 2011; Schmolke
et al., 2010), but is still hindered by mistrust (Hunka
et al., 2013). Following a decision tree such as the one we
present makes data selection and modeling decisions more
transparent, especially in combination with documentation of
the steps (Ayllón et al., 2021), and thus will lead to more reli-
able and interpretable models.
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able on the Wiley Online Library at https://doi.org/10.1002/
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